
分光器を使ってプリズムの分光をし、分散公式の定数を求めるという実験を行いました。
Hgランプを使って波長とその屈折率をそれぞれのスペクトルで求めて、ハルトマンの分散公式というものに代入して定数を求めるのですが、その公式が
n-1=A+f/(λ^2 - {λ0}^2)
で、λ、nが波長とその屈折率です。
A、f、λ0は定数らしいのですが、連立方程式をいくつか解いているとλ0の値が虚数になってしまいました。
λ0が何の値かは明記されていませんでしたが、λと書くくらいなので波長ですよね。虚数の波長というのはありえるのでしょうか?
そもそもλ0というのは定数ですよね?実数と虚数、定数が2つというのはおかしくないでしょうか?
A 回答 (4件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
>文献値でも計算すると波長が虚数になってしまう、というのはわからないでしょうか?
エスパーでもない限りはわかるはずがないですよ。
可能性としては、
・計算ミス。
・連立方程式を解く過程が間違っている。
・データが分散式に乗っていない
ぐらいでしょうか。
もともとの分散式が所詮は近似式なので、現実のデータとはいくらかずれます。
特に、紫外域、赤外域に近いところでは大きく外れてきている可能性があります。
いずれにしても連立方程式で解くのはまことによろしくない。
最小二乗法を使うべきです。
No.3
- 回答日時:
最小二乗法はこのサイトがわかりやすいと思います。
http://szksrv.isc.chubu.ac.jp/lms/lms1.html
参考URL:http://szksrv.isc.chubu.ac.jp/lms/lms1.html
ありがとうございます。頑張ってみます。
文献値でも計算すると波長が虚数になってしまう、というのはわからないでしょうか?BK7というガラスを使ったのですが、文献値でも誤差を考えないと行けないということでしょうか?
No.2
- 回答日時:
測定値が誤差を含んでいるので、通常の連立方程式を解くようには解けないというのは#1さんの回答のとおりです。
ただし、この式からA, f, λ0を決めるのは、非線形の最小二乗法を使う必要があり、課題としてはやや酷なように思えます。ガラスの場合であれば、もう少し扱いやすい
1/(n^2-1) = -C [λ^(-2) - (λ0)^(-2) ]
という分散公式に従うことが知られています。この式なら、1次の最小二乗法で済みます。
参考: ヘクト『光学I』第4版 丸善 p.111
>λ0が何の値かは明記されていませんでしたが
ほとんどの原子は紫外線の領域に電子による電磁波の共鳴吸収があり、
λ0はこの共鳴吸収の波長です。可視光の分散は、この紫外域の
共鳴吸収の裾を引っかけているものです。
回答ありがとうございます。
>非線形の最小二乗法を使う必要があり
>1/(n^2-1) = -C [λ^(-2) - (λ0)^(-2) ]
恥ずかしながら、前述の通り勉強不足のためか私にはnが一次の時といまいち違いがわかりません。と言いますか、最小二乗法自体もよくわかっておりません。誤差の伝播や算術平均とは違うのでしょうか・・・?参考資料の方、読んでみたいと思います。
>ほとんどの原子は紫外線の領域に電子による電磁波の共鳴吸収があり、
>λ0はこの共鳴吸収の波長です。可視光の分散は、この紫外域の
>共鳴吸収の裾を引っかけているものです。
こちらも私の勉強不足でわかりませんが、キーワードを頼りに調べてみようと思います。ありがとうございました。
No.1
- 回答日時:
実験値(実験による測定値)には、必ず誤差があります
この誤差を 充分な考察をしないで扱うと 質問のような状況になります
複数の方程式(連立の)が、平行に近い状態で、誤差を無視すると 誤差による無意味な差が 意味を持つ形で連立方程式を解くことになります
質問のような場合には 同一条件で 複数の測定を行い 最小二乗法等で 誤差の影響を低減させる等の対応が必要です
質問の通りλが虚数になることはありえません
回答ありがとうございます。
今まで実験では誤差計算をきちんとやってこなかったので、恥ずかしながら最小二乗法というのが何かわかりません。
私の大学で使っているテキストで調べたところ、
(誤差)=0.6745*√{(Σδ^2)/n(n-1)}
という算術平均値の確率誤差というところに括弧付で最小二乗法とあったり、その更に後の方に「間接測定の最小二乗法」とあったり、上記の公式的なものとは別なのでしょうか?
また、インターネットや理科年表で調べた屈折率の値を代入しても虚数解が出てしまうのですが、これにも誤差を考えなければならないのでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 フーリエ変換後の負の周波数成分の扱いについて 4 2022/09/03 10:18
- 物理学 光の回折 図は超音波による光の回折を示した概念です。この図では入力される超音波の周波数および入力され 5 2023/04/18 11:52
- その他(コンピューター・テクノロジー) PIC16F1シリーズマイコンのNCO機能について 1 2023/04/18 08:41
- 工学 制御工学についてです。 1巡伝達関数Lが L=k/(s+1)(s+2)(s+3) である。kをゲイン 2 2023/01/31 09:28
- 物理学 ドップラー効果について 静止している波源から出た波(光速c)を遠ざかる観測者が観測した場合 「λは観 4 2022/05/06 15:42
- 物理学 とても難しい 問題 ベクトル解析 1 2022/12/09 16:38
- 物理学 光のドップラー効果の問題がよく分かりません v=fλ₀のλ₀が大きくなってλ₁になると、fは一定で、 5 2022/10/22 20:01
- 数学 aを実数の定数とする。xの方程式 (x²+2x)²ーa(x²+2x)ー6=0 の異なる実数解の個数を 4 2023/02/13 23:15
- 物理学 特殊相対性理論を、完全否定に成功~ガンマの数式は、成立しない。 2 2023/03/08 19:30
- 物理学 電磁波の特徴おしえてください。誘電率と透磁率に対する周波数・波長の関係を教えてください。 2 2022/10/01 12:19
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報