A 回答 (8件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
一般に証明できません
結合法則の成り立つ代数系で証明できる必要十分条件は
BX=E なるXつまりBの右逆元の存在です
十分条件:
BA=BAE=BA*BX=B*AB*X
=BX=E
必要条件:
必要ないですね!
No.6
- 回答日時:
コピーミス
正しくありません
Aが
[0 1 0]
[0 0 1]
であり
Bが
[0 0]
[1 0]
[0 1]
の場合
A・Bが
[1 0]
[0 1]
となりますが
B・Aが
[0 0 0]
[0 1 0]
[0 0 1]
となります
ただしAとBが正方行列の場合にはA・B=E⇒B・A=Eです
今は逆行列という概念がない時代だとすると
Bの余因子行列を|B|(≠0は明らか)で割ったものをB’としたとき
B・B’=Eとなるから
A・B=Eの両辺に右からBをかけ左からB’をかけると
B・A・B・B’=B・E・B’
よって
B・A=E
No.5
- 回答日時:
正しくありません
Aが
[0 1 0]
[0 0 1]
であり
Bが
[0 0]
[0 0]
[0 1]
の場合
A・Bが
[1 0]
[0 1]
となりますが
B・Aが
[0 0 0]
[0 1 0]
[0 0 1]
となります
ただしAとBが正方行列の場合にはA・B=E⇒B・A=Eです
今は逆行列という概念がない時代だとすると
Bの余因子行列を|B|(≠0は明らか)で割ったものをB’としたとき
B・B’=Eとなるから
A・B=Eの両辺に右からBをかけ左からB’をかけると
B・A・B・B’=B・E・B’
よって
B・A=E
No.4
- 回答日時:
問題の前提についてですが、
・ E は n 次単位行列である。
・ A, B は n 次正方行列である。
・ A, B の可逆性は仮定しない。
ですか?
とすると、これは見かけより難しい(手間がかかる)問題です。
私の手持ちの本では、
齋藤正彦著「線型代数入門」東京大学出版会 ISBN4-13-062001-0
の P48 に、次のような定理が載っていますので、この系になるでしょう。
「 n 次正方行列 A に対し、XA = E となる n 次行列 X が存在すれば A は正則である。AX = E となる X の存在を仮定しても同様である。」
証明は行列の基本変形を利用しています。
#4 さんの証明は間違いだと思いますので、指摘させていただきます。
AX = A より X が単位元だといっておられますが、ある1つの A だけで AX = A が成り立っていても X が単位元とは言えないのではないでしょうか?例えば、A と X を (1,1) 成分だけが 1 で他は 0 の正方行列とすると、 AX = A ですから。
単位元 E の定義は、<全ての> A にたいして AE = EA = A が成り立つことだったと思います。
No.3
- 回答日時:
群論がわかっていれば、比較的簡単に証明できます。
結合法則と単位元の一意性を使います。
A=EA=(AB)A=A(BA) ・・・(1)
よりBA=Eがわかります。 ・・・(2)
(1)の説明
・最初の等号は単位元(単位行列)の性質から
・2番目の等号はAB=Eより
・3番目の等号は結合法則より
(2)の説明
・単位元の一意性より(掛けても同じになるのは単位行列だけ)
No.2
- 回答日時:
Eは単位行列ですよね?
だとすると、det(AB)=det(E)=1より、detA≠0で、
A^-1が存在し、AB=E ⇒B=A^-1E
⇒B=A^-1E=A^-1
⇒BA=E(Q.E.D.)
No.1
- 回答日時:
交換法則ですね。
行列は確か交換法則が成り立たなかったと覚えて
ます。参考URLにも書いてます。
参考URL:http://www.geocities.co.jp/HiTeens-Penguin/1552/ …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
家の中でのこだわりスペースはどこですか?
自分の家で快適に過ごすために工夫しているスペースはありますか? 例)ベランダでお茶を飲むためのカフェテーブル ゲーミングに特化したこだわりのPCスペース
-
【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
2024年は「名探偵コナン30周年」「涼宮ハルヒ20周年」などを迎えますが、 あなたが「もうそんなに!?」と驚いた○○周年を教えてください。
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
昨日見た夢を教えて下さい
たまにすごいドラマチックな夢見ること、ありませんか? 起きてからも妙に記憶に残っているような、そんな夢。
-
「お昼の放送」の思い出
小学校から中学校、ところによっては高校まで お昼休みに校内放送で、放送委員が音楽とかおしゃべりとか流してましたよね。 最近は自分でもラジオができるようになって、そのクオリティもすごいことになっていると聞きます。
-
行列でAB=Eの時、Bは一意的に決まるでしょうか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
素数の性質
-
親の再婚相手との問題です。私...
-
証明終了の記号。
-
数学の「証明」のときなどの接...
-
素数の積に1を加算すると素数で...
-
数学の証明問題で、「証明終了」...
-
中学校の2年生に仮定と結論を...
-
limx→∞ x^n/e^x=0を高校数学の...
-
大学の二次試験で・・・
-
喪中はがきについて~娘の夫が...
-
直角三角形の性質
-
(4^n)-1が3の倍数であることの...
-
「証明証」と「証明書」はどう...
-
つながった2つのリングを外す
-
実息とは?
-
「・・・のとき」という言葉の...
-
俺は間違っていない 俺は悪くな...
-
正解が一つとは限らない数学の...
-
婿養子に入ったのに出て行けと...
-
よって・ゆえに・したがって・∴...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
素数の積に1を加算すると素数で...
-
素数の性質
-
数学の「証明」のときなどの接...
-
数学の証明問題で、「証明終了」...
-
証明終了の記号。
-
(4^n)-1が3の倍数であることの...
-
3,4,7,8を使って10を作る
-
よって・ゆえに・したがって・∴...
-
親の再婚相手との問題です。私...
-
「証明証」と「証明書」はどう...
-
47歳、母親の再婚を子供の立場...
-
正解が一つとは限らない数学の...
-
兄弟の子どもの養子縁組は可能...
-
婿養子です、妻と離婚して妻の...
-
夫が亡くなった後の義理家族と...
-
婿養子に入ったのに出て行けと...
-
喪中はがきについて~娘の夫が...
-
無理数って二乗しても有理数に...
-
実息とは?
-
直角三角形の性質
おすすめ情報