今だけ人気マンガ100円レンタル特集♪

divE = ρ/ε

という式(微分形のガウスの法則?)があると思います。これはマクスウェルの方程式の一つとされていると思います。

これと、ポアソンの方程式

ΔV = -ρ/ε

は要するに一緒のことを言っているのでしょうか?
よろしくお願いします。

A 回答 (2件)

divE = ρ/εとrot E=0からΔV = -ρ/εが導かれます。


http://www.moge.org/okabe/temp/elemag/node18.html
    • good
    • 1

同じことではありません。

ポアソンの式は、静電場もしくはあるゲージ条件でしか成り立ちません。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

お礼日時:2008/07/31 02:32

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qポアソンの方程式を用いた電位の求め方

ポアソンの方程式を用いて原点に置かれた単位点電荷による電位を求めるという問題なのですが結果がガウスの法則によって求まる値と異なってしまいました。

一つ前の問題で電位がC/r(Cは定数)と表せることが求められたので、
ポアソンの方程式より ∇^2(C/r)=-ρ(r)/ε
両辺を半径rの円で体積積分すると、ガウスの発散定理より
左辺=∬∇(C/r)・dS
=4πr^2/r^2×{∂(cr^2/r)/∂r} (極座標における発散より)
=4πc

右辺=-1/ε∬∫ρ(r)dv
=-1/ε (原点に単位点電荷があるのみなので)

右辺と左辺を比較することでc=-1/4πεとなり、電位は-1/4πεrとなるのですが、
ガウスの法則によって求めた電場を積分して求められる電位は1/4πεrとなります。(こちらは教科書に載っていたのであっていると思います)

どこが間違っているのでしょうか。
基本的な問題ですがご存知の方、よろしくお願いいたします。

Aベストアンサー

>左辺=∬∇(C/r)・dS
>=4πr^2/r^2×{∂(cr^2/r)/∂r} (極座標における発散より)

ここで間違っています。
∇(C/r)は発散ではなく、勾配(gradient)です。
ですから、極座標の発散の公式ではなく、勾配の公式を使ってください。

Q電子のエネルギーについて

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?

( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・
E = hν = 1/2 mv^2
従って、
p = h / λ = hν / v = 1/2 mv ??
これは運動量の定義と矛盾します。

(ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・
E = mc^2 + 1/2 mv^2 ~ mc^2 = hν
従って、
p = h / λ = hν / v = mc^2 / v ??
これも運動量の定義と矛盾します。

つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。

数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレ...続きを読む

Aベストアンサー

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度により表されます。群速度Vgは、角速度ωを波数ベクトルの大きさkで微分したものです。つまり、Vg=dω/dk となります。エネルギーと運動量は、ωとkを使うと、E=h'ω、p=h'k となりますから(h'=h/2π)、Vg=dE/dp となります。非相対性理論の範囲では、E=p^2/2m ですから、Vg=vとなります。相対性理論の範囲では、E^2=p^2c^2+m^2c^4ですから、これもVg=vとなります。

 それでは、質問者様の質問に回答します。
1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

 電子のエネルギーは、静止質量エネルギーを含んだものです。シュレーディンガー方程式のエネルギーは、ご指摘のとおり、静止質量エネルギーは含んでおりません。このため、相対論的量子力学で扱うエネルギーとシュレーディンガー方程式で扱うエネルギーとでは、静止質量エネルギーの分だけ違いがあるということになります。これは(ディラックによれば)、物理的に影響のない項目です。なぜなら、ハミルトニアンは、実の定数分の不定さがあるからです。

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?
 
 既に上で述べたように、λν=v ではなく、E=hν と p=h/λから位相速度が決まります。ド・ブロイはなぜこの式を適用することができると考えたのか、については、ド・ブロイ自身の論文は見ていませんが、ディラックによれば、相対論的に不変な性質から出発してこの考えに至ったようです。つまり、エネルギーと運動量は4次元ベクトル(E/c,p1,p2,p3)を成します。波数ベクトルについても、(ω/c,k1,k2,k3)は4次元ベクトルとなります。どちらも4次元ベクトルであることから、エネルギー運動量を波で表すということは、光だけに限定されるものではなく、ほかの物質であっても成り立つものと考えた訳です。

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度...続きを読む

Q変位電流と電流密度について。

ある問題集の記述で、
変位電流δD/δt は電流密度iと同じものとみなせばよい。
という記述があるのですが、イメージが沸きません…。なぜ変化する電束密度Dを時間tで微分すると、電流密度になるのでしょうか?

(以下は+αなので、もし気が向かれたら教えてください)
電束密度と電場の違いもピンと来ません。電場は、電気力線(=電束?)の単位面積あたりの量なのですよね。電束密度も字義からして同じもののような気がするのですが、定義だと
D = εE
となっていて、よく分かりません。

よろしくお願いします。

Aベストアンサー

とりあえず、イメージしやすいように電極を想定します。
電極からでる電束(電束密度の面積積分∫DdS)は電極にある電荷に対応しています。
電束の増減(時間微分)は電荷の増減に対応し、電荷の増減(時間微分)は電極に出入りする電流に対応します。
ということで、電束密度の時間微分は電流密度に相当する量になります。

電界(電場)の強さEと電束密度Dは異なる量です。(電気回路だと、それぞれ電圧と電荷に相当します。)
電気力線(の密度)は電界の強さに対応付けることが多いようです。
例えば、誘電率εが異なる媒質の境界では、電束は保存(連続)するけど、電界の強さは変化する、という具合にまったく異なる振舞をします。

Q正孔の有効質量とは

半導体の教科書に正孔の有効質量と出てきました
正孔は電子がない状態を表すので質量は0ではないのですか?
わかりません

それと、具体的なその値も教えていただければ
うれしいです

Aベストアンサー

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電界Eによる力ももちろん受けますが、それだけではなくて、結晶中の電子は、周期的に並んでいる原子核から力(本当は量子力学を考えているので、「力」という言葉を使うのはかなり語弊があるのですが)からも力を受けています。しかも、結晶ですから、原子核は近いのから遠いのまで大量にあります。
なんで、結晶中の電子の運動は、実際には、上に書いたような簡単な式では表わすことができません。

な、はずなんですが、実は、うまいこと近似をすると、結晶の原子核たちから受けている力をすべて忘れてしまって、その代わりに、電子の質量がmではなくて、m'になったと思ったような式
F = qE = m'a
で、結晶中の伝導電子の動きが(近似的にですが)記述できてしまうということがわかったんです。本当は、結晶中のすべての原子を考えて、さらに量子力学を考えなければ、結晶中の伝導電子の動きは記述できないはずなのに、実は、それが、古典力学の式で、質量の値を有効質量というものに取り替えると、近似的には、電子が真空中に1個あるのと同じように扱えてしまう、ということです。これを、準古典力学表示 と言っています。
この有効質量というのは、電子の質量というよりは、むしろ、結晶を構成する原子や、結晶の構造によって決まっています。

で、正孔の有効質量ですが、これも、質量となってますが、本当の質量とはほとんど関係ないです。正孔は、本当は電子が抜けた穴なわけですが、その電子の抜けた穴がどう動いていくかを量子力学をつかってきちんと記述するかわりに、ある有効質量をもった+電荷を持つ正孔という粒子が真空中に1個あると思って、古典力学の式を立てると、たまたま、うまくいってしまうんです。

ただし、この準古典力学は、あくまで近似なんで、本当は正しくありません。正確に言えば、ポテンシャル関数の極値の周りでしか成り立ちません。なんですが、半導体では、普通、価電子帯の中で一番エネルギーが高い電子(ポテンシャル関数が極大値を取るところ)と、伝導帯の中で一番エネルギーが低い電子(ポテンシャル関数が極小値を取るところ)、にしか興味がないことが多いので、たいていうまく行ってしまいます。

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電...続きを読む


人気Q&Aランキング