ママのスキンケアのお悩みにおすすめアイテム

ラプラシアンが、物理的側面から、どのような意味を持つのか想像できません。

ΔA=∇^2 A= div grad A
ラプラシアンが勾配の発散であることは、数学的に理解できます。
また、勾配、発散(湧き出し)はイメージできます。

しかし、勾配の発散のイメージが分かりません。
googleで調べてみましたが、検索方法が悪いのか、理解できるページが見つかりませんでした。
Gooにも該当する質問はないようです。

初歩的な内容で恥じ入るばかりですが、
どなたか、「勾配の発散のイメージ」をご教授ください。
よろしくお願いいたします。

このQ&Aに関連する最新のQ&A

div 意味」に関するQ&A: <div>の中の<div>の意味

A 回答 (3件)

>gradならば、「坂道の勾配」などで説明されると思うのですが、そのようなイメージ的なニュアンスで…。



いい線行っているのではないでしょうか?
勾配というのは,要するに傾きですよね。発散場のベクトルは最大勾配を下る向き。山をちょろちょろ下る水の流れのようなものです。「ちょろちょろ」でなくてはなりませんが,イメージとしては十分。
山肌は2次元面なのに対して,3次元空間のポテンシャルの勾配というのをイメージできないのは,しかたのないことです。むしろポテンシャルAに対する理解が十分かどうかが問われるでしょう。たとえば,密度減少の最大勾配方向に向かう流れベクトル・・・などはいかがでしょう。そうした具体的な場面に適用していくことで,ラプラシアンのイメージができていくと思います。本来が数学的抽象的な概念なのですから,イメージをつくるにはアナロジーと応用を知る以外にはないのではないでしょうか?
    • good
    • 1
この回答へのお礼

ご回答の前半部分は、

水流をuベクトル、水のポテンシャルを高度hの関数φ(h)と定義すると、
u= grad φ(h)
となり、勾配の発散、即ち水流の湧き出し量Vは、
V= div u= div grad φ(h)
となる。但し、オイラーの連続式より、密度ρの時間・空間変化量はすくなくてはならない。

という理解でよろしいでしょうか?
なんとなくイメージできました。ありがとうございます。

後半部分は、気流でイメージすると、

三次元空間の圧力pの勾配により気流流速uが発生するので、
u= grad p *α
となり、その発散はオイラーの連続式
∂ρ/∂t + div(ρu) =0
で表記できる

という理解でよろしいでしょうか?
具体例に応じて考えていくしか無いのですね…。
ご回答、ありがとうございます。

お礼日時:2010/01/01 13:56

#1です。



>静電場は電場の発散であり、

電場の発散は電荷密度ですね。
    • good
    • 0
この回答へのお礼

確かに電荷密度ですね…。
すみません。

お礼日時:2010/01/01 13:59

発散のイメージでじゅうぶんではないでしょうか。



ヴェクトルの発散は、そのヴェクトル場を場の源と関連付けます(例えば電磁気学のガウスの法則)。そのヴェクトル場がスカラー場(ポテンシャル)の勾配で表されるときには、ヴェクトル場の発散はスカラー場の勾配の発散、すなわちラプラシアンという形になります。ヴェクトルよりスカラーの方が扱いやすいことがあるので、場の記述として、後者がよく使われるのだと思います。
    • good
    • 0
この回答へのお礼

静電場は電場の発散であり、電場はポテンシャルの勾配であるので、
div grad φ =Δφ
という事でしょうか…?

勾配の発散がラプラシアンという事は(数学的に)理解できるのですが、
「勾配の湧き出し量」を図示し説明できるようにイメージできません。
gradならば、「坂道の勾配」などで説明されると思うのですが、そのようなイメージ的なニュアンスで…。

ご回答、ありがとうございます。

お礼日時:2009/12/31 22:50

このQ&Aに関連する人気のQ&A

div 意味」に関するQ&A: grad、div、∇

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qgrad、div、∇

物理なのか、数学なのかという感じなのですが・・・。

まず、grad、div、∇について、分かりやすく教えていただけませんか?。
それから、たとえば、圧力pがあったとして、「grad p」の物理的意味を教えて頂けるとうれしいです。

数学も物理も苦手なので、詳しく分かりやすく教えて頂けると幸いです。

よろしくお願い致します。

Aベストアンサー

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる場所から
水平方向に 10km 動いたってあまり気圧は変わりませんが,
空の方向に 10km 動けばエベレスト
(最近は,チョモランマとかサガルマータとか呼ぶかな)
より高くなって,気圧はうんと下がっちゃいます.
で,y,z 方向には全く動かず,x 方向にだけ動いたとします.
このときの p の変化の割合は,偏微分を使って ∂p(x,y,z) / ∂x ですね.
同様に,x,z を固定して y だけ動かせば,変化の割合は ∂p(x,y,z) / ∂y,
x,y を固定して z だけ動かせば,変化の割合は ∂p(x,y,z) / ∂z.
つまり,以上の3つの偏微分で変化の様子がわかります.
ばらばらに3つ扱ってもいいですが,
ベクトル表示にして
x 成分が ∂p(x,y,z) / ∂x,
y 成分が ∂p(x,y,z) / ∂y,
z 成分が ∂p(x,y,z) / ∂z,
というベクトルにしたのが grad p です.
ベクトルにしておくと,
表示が簡単なことの他にもいろいろ便利なことがあります.

なお,creol さんの回答ははちょっと混乱されているようです.
p は圧力(の強さ)そのもの,grad p は p の変化の割合です.
その場所での圧力は p です.

div は,creol さんも書かれているように,発散です.
極限値が発散する,などの発散とは全く違いますので,念のため.
例えば,水流中に仮想的な直方体を考えてください.
水流は流れの方向がありますからベクトル量ですね.
で,場所にもよりますから,j(x,y,z) と書きましょう.
テキストファイルじゃうまく書けないですが,j はベクトルです.
この直方体の面を通って単位時間あたりに流れ出ていく水量(流出量)が
本質的に div j です(本当はちょっと修正がいる,後述).
直方体の6面分全部考えてくださいよ.
水量ですから,スカラー量ですね.
え? 流出量ばかりじゃ直方体の中の水がどんどん減っちゃう?
ええ,それでいいんです.
つまり,div j は直方体の中の水量ρ
(スカラー量,本当は密度ですが)
の単位時間あたりの減少分を表しています.
式で書くなら, div j = - ∂ρ / ∂t です.
右辺のマイナスは減少だからついているんです.
ふつうの水流(例えば,川なんか)なら?
div j の計算のときに,流出量をプラスとして考えているので,
入ってくる分(流入量)はマイナスで考えてください.
ごくふつうに川が流れているとき,
上流の方から流入量と,
下流側への流出量は同じですよね.
そうすると,プラマイうち消して,div j = 0,
直方体の中の水量は時間変化しません.

え,直方体の大きさ?
あ,それはですね,十分小さくとってください.
小さくとれば,流入量も流出量も小さくなっちゃう?
実は,正味の流出量を直方体の体積で割って
直方体を小さくした極限が本当の div j です
ρが本当は密度だと言ったのもこういうところと関係があります.

微分で表現すれば
div j(x,y,z)
= ∂jx(x,y,z) / ∂x + ∂jy(x,y,z) / ∂y + ∂jz(x,y,z) / ∂z
です.
jx は j の x 成分,他も同様.


∇の記号は creol さんの書かれているとおり.
読み方は「ナブラ」(nabla) です.
ちょっと変わった名前ですが,
竪琴(形が似ている)のギリシヤ語名から来ています.

grad,div,と並んでベクトル解析でよく出てくるものに
rot (rotation,回転)があります.

わかりやすく,ということで回答してみました.

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる...続きを読む

Q線積分、面積分とは何?

現在、大学でベクトル解析を学んでいます。
そこで、線積分や面積分といったものがでてきたのですが、計算方法はわかったのですが、何を求めているのかが
今ひとつ分かりません。
 線積分とは、定点から、線分のある点に向かう
ベクトルとそのある点における値を掛けたものを線分上の
全ての点において足し合わせたもの、面積分とはある点における面素とその点における法線を掛けたものを面上の全ての点において足し合わせたもの
 と解釈しているのですが、やはり、どこの値がでてきているのかが今ひとつ分かりません。また、これを求めることによりどんな利点があるのでしょうか?力学や電磁気等を理解するには必須みたいですが・・・。
 よろしければ、回答お願いいたします。

Aベストアンサー

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。

一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

*******************************************
以上のようだそうです.

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例...続きを読む

Q円筒座標系でのナブラ、ラプラシアン

流体力学のナビエ・ストークス方程式を
勉強しています。

途中で、円筒座標系における
ナブラ∇、およびラプラシアンΔ
が出てきて、
∇=(∂/∂r, ∂/r∂θ, ∂/∂z)
Δ=∂^2/∂r^2 + ∂/r∂r + ∂^2/(r^2∂θ^2) + ∂^2/∂z^2
となっています。
なぜ、変なところでrで割り算したり、
ラプラシアンの項が四つになったりしているのでしょうか。
どなたか分かる方、教えていただきたいです。

Aベストアンサー

 
 
 円筒(または円柱)座標ですね;

  x → r  長さ→長さ
  y → θ 長さ→角度
  z → z  長さ→長さ

 時計の針がちょっと回転したとき、先端の動きは 針の長さ方向と直交してますね。x と y のように。
針の長さを r、ちょっとの回転角度を dθ とすれば
先端の動きは r dθ です。
dr を dx だとすれば、それに直交する dy は r dθです、
つまり、
  ∇=(∂/∂x, ∂/∂y,   ∂/∂z)
  ∇=(∂/∂r, ∂/r∂θ, ∂/∂z)


 △の方は、(r^2∂θ^2) が dy^2 だと気付いて欲しいんですが、微分の基本の公式
  (fg)' = f'g + fg'
で、項を増やしたあとのようですね。
ご自分で確認してください。
 
 

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q斉次とは?(漢字と意味)

"斉次"という漢字表記と意味の対応についてお尋ねしたいです。

次数が斉しい、と訓読できると思うのですが、
ここでいう次数とは何の次数なのでしょうか?

Aベストアンサー

 ご存じの通り、「斉次」=「次数が斉(ひと)しい」 でよろしいと思います(英語では、homogenous)。また、別の言い方としては「同次」ともいいます。

 さて、お尋ねの次数についてですが、例えば、xとyの多項式の場合は、xとyを同じものとして扱って、同じ次数(xとyを掛けた回数)だけで表されるものを「斉次」といいます。

 例)○ x^3+x^2・y+x・y^2+y^3   (x、yについての3次の斉次多項式)
   × x^3+x^2・y+x・y^2+y^3+5 (定数項の5は次数0で異なる次数のものが含まれているので。)

http://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F#.E6.96.89.E6.AC.A1.E5.A4.9A.E9.A0.85.E5.BC.8F


 また、微分方程式などで使われる場合は、y、y'、y''、y'''などを同等に扱って、同じ次数(y、y'、y''、y'''などを掛けた回数)だけで表されるものを斉次微分方程式といいます。

 例)○ y''+y'+y=0    (次数は1)
   ○ y''y'+y''y+y'y=0 (次数は2)
   × y''+y'^2+y=0   (1次と2次が混在)
   × y''+y'+y=5    (0次と1次が混在)
   × y''+y'+y=x    (0次と1次が混在)

http://ja.wikipedia.org/wiki/%E7%B7%9A%E5%9E%8B%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F#.E5.AE.9A.E6.95.B0.E4.BF.82.E6.95.B0.E3.81.AE.E6.96.89.E6.AC.A1.E5.B8.B8.E5.BE.AE.E5.88.86.E6.96.B9.E7.A8.8B.E5.BC.8F.E3.81.AE.E8.A7.A3.E6.B3.95

 ご存じの通り、「斉次」=「次数が斉(ひと)しい」 でよろしいと思います(英語では、homogenous)。また、別の言い方としては「同次」ともいいます。

 さて、お尋ねの次数についてですが、例えば、xとyの多項式の場合は、xとyを同じものとして扱って、同じ次数(xとyを掛けた回数)だけで表されるものを「斉次」といいます。

 例)○ x^3+x^2・y+x・y^2+y^3   (x、yについての3次の斉次多項式)
   × x^3+x^2・y+x・y^2+y^3+5 (定数項の5は次数0で異なる次数のものが含まれ...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q臨界減衰における特性方程式の解

(d2x/dt2)+6(dx/dt)+9x=0・・・(1)
のxの解を求めたです。
x=e^(at)
とおき、(1)を
a^2+6a+9=0・・・(2)
の特性方程式に書き換え
a=-3 の重解が得られました。
よってx1=e^(-3t)となります。(ここまでは分かります)
また、もう一つのxの解、
x2=te^(-3t) があり(←ここが分かりません)
x1,x2は互いに独立であるためxをx1,x2で表わしてxを初期条件から求める解法が参考書に書いてあるのですが、
何故、もう一つのx2が
x2=te^(-3t) 
となるかが分かりません。
どなたか、詳しく教えてください。
よろしくお願い致します。

Aベストアンサー

まず二階の微分方程式なので独立な特殊解が二つ必要です。
しかし特性方程式の解が重解なので1個しか出てきません。

そこで、質問のような解をおいてみるとちゃんと解であることがわかります。

重解の場合はこの二つの線形和が一般解になることが知られており、実用的には特性方程式の解が出てきた時点でいきなり答えを書いちゃいます。

なぜかということですが、e^(-3t)*Z(t)とおいて二つ目の解を探したりすると答えが得られます。(微分方程式における技のひとつです)

もう少しだけちゃんとした議論だと、特性方程式が二解を持つ状態の一般解から、λ1とλ2が一致する極限をうまくとることで得られます。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング