ナブラは1階の偏微分演算子で、
∇で表され、∇=(∂/∂x,∂/∂y,∂/∂z)と理解しています。
ラプラシアンは2階の偏微分演算子で、
Δで表され、ナブラ同士の内積から、
Δ=∇・∇=(∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2
で表されると認識しています。
ここまでの認識は正しいでしょうか?
ナブラの定義についてですが、
∇=(∂/∂x,∂/∂y,∂/∂z)=ex(∂/∂x)+ey(∂/∂y)+ez(∂/∂z)
ex,ey,ezは互いに直交する各方向への単位ベクトルである。
という記述がありました。
ナブラの定義ですが、
∇=(∂/∂x,∂/∂y,∂/∂z)=ex(∂/∂x)+ey(∂/∂y)+ez(∂/∂z)
が正しいのでしょうか?
eは基底を表しているかと思いますが、なぜ基底を取る必要があるのでしょうか?
そしてなんで和で表されるのでしょうか?
以上、ご回答よろしくお願い致します。
No.3ベストアンサー
- 回答日時:
Δ = ∇・∇ = (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2
にせよ、
∇ = ex(∂/∂x) + ey(∂/∂y) + ez(∂/∂z)
にせよ、
単なる暗記のためのタトエバナシです。
(∂/∂x), (∂/∂y), (∂/∂z) をスカラーみたいに扱えば、
内積だの、基底上の成分表示だのみたいな式になる…
というだけの話。
歴史年号のゴロ合わせみたいなものだと思えばいい。
∇ を関数 f(x,y,z) に作用させたとき、
∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)
= ex(∂f/∂x) + ey(∂f/∂y) + ez(∂f/∂z)
と書けますよね。こちらの式の変形は、
基底が出てくることも、和で表せることも、
普通のベクトルの計算だから、疑問はないでしょう?
この ex(∂f/∂x) + ey(∂f/∂y) + ez(∂f/∂z) を、
= { ex(∂/∂x) + ey(∂/∂y) + ez(∂/∂z) } f
と書くことにしちゃおうよ…
と提案しているだけなんです。
Δ = ∇・∇ = { ex(∂/∂x) + ey(∂/∂y) + ez(∂/∂z) }^2
= (∂/∂x)^2 + (∂/∂y)^2 + (∂/∂z)^2
の式で、基底は ex・ex = ey・ey = ez・ez = 1,
ex・ey = ey・ez = ez・ex = 0 によって消えるのですが、
これも、∇ をあたかもベクトルのように扱えばそうなる…
ということです。
∇ は、ベクトルではなく、作用素環上の加群の元だ…
などの話は、ここではひとまず置いといて。
この回答への補足
いつもご回答ありがとうございます。
∇に関して、
∇=(∂/∂x,∂/∂y,∂/∂z)=ex∂/∂x+ey∂/∂y+ez∂/∂z
であることは理解できました。
また、Δに関しても、
Δ=∇・∇=(∂/∂x)^2+(∂/∂y)^2+(∂/∂z)^2
となることも理解できました。
ここで、
勾配(grad)は、
スカラー関数をfとすると
gradf=∇f=(∂/∂x,∂/∂y,∂/∂z)f=(ex∂/∂x+ey∂/∂y+ez∂/∂z)f
となることは理解できます。
発散(div)は、
ベクトル関数をg=(gx,gy,gz)とすると、
divg=∇・g=(∂/∂x,∂/∂y,∂/∂z)・(gx,gy,gz)
より計算されますが、
(ex∂/∂x+ey∂/∂y+ez∂/∂z)を使って計算できるんでしょうか?
回転(rot)も同様に、
ベクトル関数をg=(gx,gy,gz)とすると、
rotg=∇×g=(∂/∂x,∂/∂y,∂/∂z)×(gx,gy,gz)
より計算されますが、
(ex∂/∂x+ey∂/∂y+ez∂/∂z)を使って計算できるんでしょうか?
以上、ご回答よろしくお願い致します。
ご回答ありがとうございます。
理解できない点がありますので、再度質問させて頂きます。
ご回答下されば幸いです。
以上、よろしくお願い致します。
No.2
- 回答日時:
ex=(1, 0, 0), ey=(0, 1, 0), ez=(0, 0, 1) とすると
∇=(∂/∂x,∂/∂y,∂/∂z)
=(∂/∂x,0,0)+(0,∂/∂y,0)+(0,0,∂/∂z)
= ex・∂/∂x + ey・∂/∂y + ez・∂/∂z
ですよね。同じものです。
数学的には、ベクトルは単にスカラーの並びですが、
基底を使った表現は、スカラー値がどの基底に基づいているかを
明示します。より厳密な表現と言ってよいと思います。
この回答への補足
ご回答ありがとうございます。
∇=(∂/∂x,∂/∂y,∂/∂z)
=(∂/∂x,0,0)+(0,∂/∂y,0)+(0,0,∂/∂z)
単純にベクトルの足し算しをしているだけですか?
また、ナブラの定義を
ex・∂/∂x + ey・∂/∂y + ez・∂/∂z
とすると、ラプラシアンには基底はつかないのでしょうか?
以上、お手数をお掛けしますがご回答よろしくお願い致します。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 テンソル ひずみのマトリクス表記 3 2022/04/23 21:22
- 物理学 物理の問題 2 2022/12/22 22:11
- 物理学 最後の(c)が分からりません。 流れの把握のため(a).(b)の解答(多分あっています)を記述してい 2 2023/04/18 22:49
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
- 物理学 量子力学 生成消滅演算子 2 2022/08/04 23:17
- Excel(エクセル) エクセルの数式で教えてください。 1 2023/04/21 08:59
- 物理学 電磁波に関する問題 2 2023/01/31 13:52
- 物理学 スピン 行列表示 固有状態 測定値 1 2022/08/16 18:39
- 数学 線形代数学の問題です! Vは 4 次元ベクトル空間とし線形変換 f ∶ V→ V のある基底 v1, 1 2022/06/12 09:25
- 物理学 ベクトルを2乗表記 (v↑)^2 について 4 2023/05/24 15:00
このQ&Aを見た人はこんなQ&Aも見ています
-
好きなおでんの具材ドラフト会議しましょう
肌寒くなってきて、温かい食べ物がおいしい季節になってきましたね。 みなさんはおでんの具材でひとつ選ぶなら何にしますか? 1番好きなおでんの具材を教えてください。
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
うちのカレーにはこれが入ってる!って食材ありますか?
カレーって同じルーから作っても、家庭によって入っているものや味が微妙に違っていて面白いですよね! 「我が家のカレーにはこれが入ってるよ!」 という食材や調味料はありますか?
-
偏微分の記号∂の読み方について教えてください。
数学
-
0の積分
数学
-
ラプラシアンの物理的な意味
物理学
-
-
4
行列 線形代数 diag"って何ですか?"
数学
-
5
n次元ベクトルの外積の定義
数学
-
6
≡"の意味"
物理学
-
7
e^(x^2)の積分に関して
数学
-
8
微積分の記号δ、d、Δ、∂の違い
数学
-
9
電流がI=dQ/dtやI=-dQ/dtと表わしてある意味がわかりません
物理学
-
10
数学のハット、キャレットの意味は?
数学
-
11
dx/dy や∂x/∂y の読み方について
物理学
-
12
「です『よね?』」を丁寧にした言葉、敬語は?
日本語
-
13
exp(-ax^2)*cosx の証明
数学
-
14
エクセル:6E-05という表現は?
数学
-
15
単位法線ベクトルの問題なんですが。。。
数学
-
16
電磁気学の2つの同心導体球の電荷分布について
高校
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微積分の記号δ、d、Δ、∂の違い
-
平面の交線の方程式
-
行列とベクトルの表記の仕方に...
-
2つに直交する単位ベクトル
-
n次元ベクトルの外積の定義
-
一次独立だけど、基底にならな...
-
正規直交基底であることの確認
-
「ノルム、絶対値、長さ」の違...
-
WORDの数式エディタ
-
複素数の絶対値の性質について
-
ベクトルについて
-
2次元における外積について
-
行列式が1とはどういう意味です...
-
2つの直交3次元ベクトル同士の...
-
一次従属の問題
-
単位行列の固有ベクトルは全て0...
-
一本のベクトルに直交するベク...
-
「任意」ってどういう意味?
-
2次元状に四点がありその中心を...
-
det(A)≠0 の必要十分条件を教え...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報