No.4ベストアンサー
- 回答日時:
私としての簡単な理解は、行列は一次変換の係数を表しています。
2次元の座標で考えますと、x-方向とy-方向の基底単位ベクトルe1=(10)とe2=(01)は2x1の列ベクトルで表されますが、これらの代わりにそれらの一次結合を任意の2つの「新しい基底ベクトル」にできます。
例えば、それぞれをθだけ回転したものを新しい基底ベクトルにした場合はe1=(10)はe1・Cosθ+e2・Sinθ)=(Cosθ Sinθ)、e2=(01)は-e1・Sinθ+e2・Cosθ=(-Sinθ Cosθ)になります。[ただしこれらは2x1の列ベクトルです。]
するとこれらのベクトル間の変換を表す行列は
Cosθ -Sinθ
Sinθ Cosθ
で
列ベクトル
1
0
あるいは
0
1
に掛けたものです。
最初の2つの基底ベクトルが作る正方形の面積は1ですが、新しい2つの基底ベクトルが作る正方形の面積も1になっています。すなわち基底ベクトルの作る面積が変わりません。このときは行列
Cosθ -Sinθ
Sinθ Cosθ
の行列式は「1」です。これは基底のつくる「平行四辺形」の面積の「倍率」が「1」です。
試しに
2 0
0 2
の行列で基底ベクトルを変換してみると、面積は「4倍」になっていますが、行列式も「4」になります。
次に、
1 1
0 1
で変換すると、(10)->(10)ですが(01)は(11)になりそれらの作る「平行四辺形」は面積が「1」で変わりませんが、行列式も「1」です。
SOというのは「直交座標系」を同じ大きさの「直交座標系」に変換する3x3などの行列ですがそれらの行列式は1になっています。3次元の場合は変換後の体積の倍率になっています。
行列
1 0
0 2
などでの変換後の2つの基底がどうなるか、ご自分でいろいろやってみてください。
No.3
- 回答日時:
こんばんは.
>群論では行列式が1の場合、
>specialという意味でSUとかSOと言われますが
何か勘違いされていませんか.
「行列式が1」であることは,「その行列がSUやSO元である」ことにならないのですが.
適当な3x3直交行列Qを持ってきて,
V = Q*diag(1,3,1/3)*Q'
とする(diagは対角行列)と,Vの行列式は1ですが,VはSO(3)の元ではありません(AはSL(3)の元ではあります).
仮に質問内容が「Oの元である行列のAの行列式が1であることは,AがSOの元であると言われますが…」
だとすると,
直感的には,Oの元で行列式が1であるものは
「変換行列と見なしたときに鏡像を生じない」くらいの意味になります.
3次元までは図で書けますので,
行列式が-1の直交行列による変換が鏡像を生じることが確認できると思います.
No.2
- 回答日時:
「行列式が1」とは、
その行列の行列式を計算してみると値が1だ
という意味です。
それ以上でも以下でもありません。
n次正方行列の積は、単位的半群 Mat(n) を成します。
Mat(n) は、U(n), O(n) など、様々な部分群を持ちますが、
行列式について |AB| = |A|・|B| が成立しているために、
「行列式が1」であることは積について保存され、
Mat(n) の各部分群の元で「行列式が1」であるもの
を集めた集合は、それぞれの部分群の更に部分群になります。
そこで、SU(n) や SO(n) が登場する訳です。
その辺が、意味といえば意味かな。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
初めて自分の家と他人の家が違う、と意識した時
子供の頃、友達の家に行くと「なんか自分の家と匂いが違うな?」って思いませんでしたか?
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
「ノルム、絶対値、長さ」の違いについて
数学
-
複素解析で、極の位数の求め方
数学
-
積分で1/x^2 はどうなるのでしょうか?
数学
-
-
4
行列の積の可換条件
数学
-
5
e^(x^2)の積分に関して
数学
-
6
ヘシアンが0の場合どうやって極値が存在することを調べればよいのでしょう
数学
-
7
単位法線ベクトルの問題なんですが。。。
数学
-
8
∫1/√x dx 積分せよ 教えて下さい
その他(教育・科学・学問)
-
9
大学数学の代数の問題です。 ・Z/12Zの部分群をすべて求めよ どなたか解いて頂けますか?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報