痔になりやすい生活習慣とは?

ベクトル平均とスカラー平均の違い及び計算方法を教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

u13さんのおっしゃってるとおりだと思います。


ただ、ベクトル平均の場合は、たとえば長さが1のもので逆のものを足すと
0になるのに対して、スカラー平均であれば、1になります。
ベクトル平均は値が大きくても向きがばらばらなら小さな値になります。
ベクトル平均はいつも風が吹いる向きを表し、
スカラー平均は強さを表していると考えればいいのではないでしょうか?
    • good
    • 1

ベクトル A(x1,y1) と B(x2,y2) があったときには


ベクトル平均は((x1+x2)/2,(y1+y2)/2)で答えもベクトル、
スカラー平均は(|A|+|B|)/2=(√(x1*x1+y1*y1) + √(x2*x2+y2*y2))/2
で答えはスカラー量になります。

実際の例えですとA君が北へ1km、B君が東へ1km進んだときには
2人の移動のベクトル平均は北東へ√(1/2)km、スカラー平均は
1kmとなります。

これで答えになってるでしょうか?
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q風向の平均値

風向の平均値を正確に出す方法を教えてください。

たとえば、
358°と2°という風向データの平均を取ると本当は0°なハズです。
しかしaverageを用いると180°になってしまいます。このような場合の平均をうまくとる方法を教えてください。

データ処理上大変困ってます。

Aベストアンサー

苦手分野なので、あくまでも参考として……
おそらく、ベクトルとして足してやり、単位ベクトルから角度を求めてやれば良いのだと思います。

358度:(-0.035,0.999)
2度:(0.035,0.999)

ベクトルの足し算:(-0.035+0.035,0.999+0.999)=(0,1.998)
スカラー:SQRT(0^2+1.998^2)=1.998

合算した単位ベクトル:(0,1) ⇒ 0度

Excelでやるとすると、こんな感じでしょうか。
A列に平均したい角度が入っているとします(例:A1に358、A2に2、A3に90、……)。
B列に =SIN(RADIANS(A1)) 
C列に =COS(RADIANS(A1)) どちらも下までコピーしてやります。
これでB、C列がベクトルの成分になります。

E1に =SQRT(SUM(B:B)^2+SUM(C:C)^2) これがスカラー
F1に =SUM(B:B)/E1
G1に =SUM(C:C)/E1 F1,G1が合算した単位ベクトル。ここから角度を出します。
H1に =DEGREES(ACOS(G1)) これが平均角度

苦手分野なので、あくまでも参考として……
おそらく、ベクトルとして足してやり、単位ベクトルから角度を求めてやれば良いのだと思います。

358度:(-0.035,0.999)
2度:(0.035,0.999)

ベクトルの足し算:(-0.035+0.035,0.999+0.999)=(0,1.998)
スカラー:SQRT(0^2+1.998^2)=1.998

合算した単位ベクトル:(0,1) ⇒ 0度

Excelでやるとすると、こんな感じでしょうか。
A列に平均したい角度が入っているとします(例:A1に358、A2に2、A3に90、……)。
B列に =SIN(RADIANS(A1)) 
C列に =CO...続きを読む

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

QExcelで平方2乗平均を計算するには

Excel2003で
平方2乗平均を計算するにはどうしたら良いのでしょうか?
手っ取り早い方法を教えて下さい。
よろしくお願い致します。

Aベストアンサー

訂正。

誤:平方2乗平均は、各要素を2乗した物の和の平方根です。
正:平方2乗平均は、各要素を2乗した物の和を要素数で割った物の平方根です。

従って、A1~A30の30個のセルの平方2乗平均は以下の式で求めます。
=SQRT(SUMSQ(A1:A30)/COUNT(A1:A30))

平方和を要素数で割るのを忘れてました。

Qエクセルの散布図のX軸に文字を表示したいのですが、どうしたらよいのでしょうか?

エクセルの散布図を使って、下の表をグラフにしたいと思ってます。
a  a1
b  a2
c  a3

この場合、そのまま折れ線グラフにすると、X軸にしっかり、a,b,cと出てくるのですが、散布図の場合は、X軸が1,2,3となってしまって、セル内の文字が表示されません。

X軸の目盛りに、セル内の文字を表示させるにはどうしたらよいのでしょうか?お願いいたします。

Aベストアンサー

残念ですが散布図では不可能です。
そもそもグラフの概念が違います。
散布図は変数領域に対するもう一方の変数の領域を見るためのグラフです。
主に物の寸法バラツキに対する、出力される数値などの相関性を見るために使用するので、要素は全て変数なんです。

質問内容のグラフは、モノに対する物量をあらわすという考え方がありますので、X軸は必然的に固有名詞になります。
この場合、散布図ではなく折れ線グラフで表すのが普通ですね。(2軸の折線でなくても可能)
Y軸要素が2つまでなら、Y1軸とY2軸に分けて要素振り分けが可能です。3つ以上ですと、EXCELでは不可能でしょう。
また、X軸の名称は同列の高い順に並びますので、連続性がある場合は、グラフの元データは上から順番に記入していかなくてはなりません。

Q「基」と「元」の使い方

経験を"もと"に話す。
上記の場合の”もと”は元、基のどちらが正しいのでしょうか?
よろしくお願いします。

Aベストアンサー

はじめまして。

ご質問1:
<上記の場合の”もと”は元、基のどちらが正しいのでしょうか?>

「基」になります。

1.「経験を"もと"に話す」とは言い換えれば「経験にもとづいて話す」ことと同じです。

2.「もとづい(て)」は「もとづく」の連用形です。

3.「もとづく」は「基づく」という漢字しか存在しません。

4.従って、ここでは元、本、素などの漢字は適切ではありません。


ご質問2:
<経験を"もと"に話す。>

1.「~をもとに」という語感が「~を元に戻す」といった語感になるため、「元」の漢字を想定されたのだと思われます。

2.しかし、ここで使われる「もと」とは「土台」の意味になります。

3.他の漢字「元」「本」などには「土台」「ベース」といった意味はありません。

4.従って、ここでは基が適切な漢字となります。

以上ご参考までに。

Q一本のベクトルに直交するベクトルについて

あじぽんと申します。質問があります。

3次元空間にベクトルAが一本だけあるとします。
さらにベクトルAに直交するベクトルがいくつもあるとします。

ベクトルAの座標がわかっている時に、
ベクトルAに直交するベクトルの座標を、どれか一つだけ計算にて求めることは出来るのでしょうか?

よろしくお願いします。

Aベストアンサー

こんばんは。

ちょっと待ってください。

「3次元空間にベクトルAが一本だけある」
と書かれていますが、
ベクトルというのは、向きと大きさ、言い換えれば、始点と終点の関係があるだけであって、
「空間にベクトルがある」
という言葉自体がおかしいです。

そして、
「ベクトルAの座標がわかっている時」
と書かれていますが、
ベクトルには座標というものは存在しません。
成分があるだけです。(上記で言った、向きと大きさ(始点と終点の関係)のことです。)


とはいえ、
成分が(a1、b1、c1)という3次元ベクトルがあるとしましょうか。
それに垂直なベクトルの成分を(a2、b2、c2)と置きます。
このとき、両者の内積はゼロになるわけですから、
a1,b1,c1,a2、b2、c2には、次の関係が成り立ちます。

内積 = a1・a2 + b1・b2 + c1・c2 = 0

>>>ベクトルAに直交するベクトルの座標を、どれか一つだけ計算にて求めることは出来るのでしょうか?

上の式を満たすようなベクトルを作ればよいだけです。
たとえば、b2とc2をゼロにしちゃえば、いとも簡単に1つ作れます。


以上、ご参考になりましたら。

こんばんは。

ちょっと待ってください。

「3次元空間にベクトルAが一本だけある」
と書かれていますが、
ベクトルというのは、向きと大きさ、言い換えれば、始点と終点の関係があるだけであって、
「空間にベクトルがある」
という言葉自体がおかしいです。

そして、
「ベクトルAの座標がわかっている時」
と書かれていますが、
ベクトルには座標というものは存在しません。
成分があるだけです。(上記で言った、向きと大きさ(始点と終点の関係)のことです。)


とはいえ、
成分が(...続きを読む

Q3次元ベクトルをある軸ベクトルで回転させたい

3次元ベクトルの求め方を教えてください。

下記図のように始点を軸ベクトルでθ(度)だけ回転したときの?の位置を求めたいのです。
これはどのような計算方法になるのでしょうか?なかなか思いつかなくて非常に悩んでいます。
アドバイスや回答をいただけたら助かります。よろしくお願いします。

Aベストアンサー

先ず、中心点(Sx,Sy,Sz)が原点にくるよう全体を平行移動させます。
(一番最後に元に戻します)
始点(Px,Py,Pz)は、(Px-Sx,Py-Sy,Pz-Sz)に移ります。この座標を(Px',Py',Pz')とします。

次に、回転軸ベクトル(Ax Ay Az)を回転させ、x軸に合致させます。それには二回の
回転変換が必要です。
最初に、ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルが
z軸に合うよう、x軸を回転させます(その角度をφとします)。
すると、回転軸ベクトルはx-y平面上に乗るので、それがx軸に合うよう、z軸を回転させます
(その角度をψとします)。

ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルは、(0 Az -Ay)。
x軸周りにφ回転させると、このベクトルは、
「1  0    0   「 0  =「      0
0 cosφ -sinφ   Az   Az・cosφ+Ay・sinφ
0 sinφ  cosφ」 -Ay」  Az・sinφ-Ay・cosφ」
で、z軸ベクトルに合うので
「      0      =「0
Az・cosφ+Ay・sinφ  0 
Az・sinφ-Ay・cosφ」  1」
これから、cosφ=-Ay/(Ay^2+Az^2)、sinφ=Az/(Ay^2+Az^2)
∴ φ=Arctan(-Az/Ay)

回転軸ベクトル(Ax Ay Az)は、
「1  0    0   「Ax =「      Ax      =「       Ax                   =「Ax 
0 cosφ -sinφ   Ay   Ay・cosφ-Az・sinφ   Ay・{-Ay/(Ay^2+Az^2)}-Az・{Az/(Ay^2+Az^2)}   -1
0 sinφ  cosφ」  Az」   Ay・sinφ+Az・cosφ」  Ay・{Az/(Ay^2+Az^2)}+Az・{-Ay/(Ay^2+Az^2)}」  0」
に変換され、x-y平面上に乗ります。これを(Ax' Ay' Az') とします。
つまり、(Ax' Ay' Az')=(Ax -1 0)

始点(Px',Py',Pz')もこの変換を受けるのですが、変換を全部纏めて後、一括変換させます。

今度は、x-y平面上に乗った回転軸ベクトル(Ax' Ay' Az')を、z軸の周りにψ回転させます。
「cosψ -sinψ 0 「Ax'  =「Ax'・cosψ-Ay'・sinψ =「Ax・cosψ+sinψ
sinψ  cosψ 0   Ay'   Ax'・sinψ+Ay'・cosψ   Ax・sinψ-cosψ
  0    0   1」  Az'」       Az'      」     0      」
これが、x軸ベクトルに合うので、
Ax・cosψ+sinψ=1
Ax・sinψ-cosψ=0
これから、cosψ=Ax/(Ax^2+1)、sinψ=1/(Ax^2+1)
∴ ψ=Arctan(1/Ax)

以上の回転の変換の積は、
「cosψ -sinψ 0 「1  0    0   =「cosψ -sinψ・cosφ  sinψ・sinφ
sinψ  cosψ 0   0 cosφ -sinφ   sinψ  cosψ・cosφ -cosψ・sinφ
  0    0   1」  0 sinφ  cosφ」   0     sinφ      cosφ   」

この変換を始点(Px',Py',Pz')に施します。
「cosψ -sinψ・cosφ  sinψ・sinφ  「Px' = 「Px'・cosψ-Py'・sinψ・cosφ+Pz'・sinψ・sinφ
sinψ  cosψ・cosφ -cosψ・sinφ  Py'   Px'・sinψ+Py'・cosψ・cosφ-Pz'・cosψ・sinφ
  0     sinφ      cosφ   」 Pz'」  Py'・sinφ+Pz'・cosφ               」 

この点を(Px”,Py”,Pz”)とします。

さて、ここでx軸に合った回転軸ベクトル(1 0 0)周りに(Px”,Py”,Pz”)を角度θ、回転させます。
「1  0    0   「Px” =「     Px”   
0 cosθ -sinθ   Py”  Py”・cosθ-Pz”・sinθ 
0 sinθ  cosθ」  Pz”」  Py”・sinθ+Pz”・cosθ」

これを(P_x, P_y, P_z)とします。

今度は、回転させた回転軸を元に戻す変換です。
回転の変換の逆行列は、行列各要素の余因子の行と列を入れ替えたものを行列式で割ったもので、
行列式は、(cosψ)^2+(sinψ)^2=1 なので、逆行列は
「 cosψ      sinψ        0  
-sinψ・cosφ  cosψ・cosφ   sinφ
sinψ・sinφ   -cosψ・sinφ  cosφ」

これを、(P_x, P_y, P_z)に施します。
「 cosψ      sinψ        0   「P_x =「P_x・cosψ+P_y・sinψ
-sinψ・cosφ  cosψ・cosφ   sinφ  P_y   -P_x・sinψ・cosφ+P_y・cosψ・cosφ+P_z・sinφ
sinψ・sinφ   -cosψ・sinφ  cosφ」 P_z」  P_x・sinψ・sinφ-P_y・cosψ・sinφ+P_z・cosφ」

結局、θ回転後のP点の座標は、
x座標 : P_x・cosψ+P_y・sinψ
y座標 : -P_x・sinψ・cosφ+P_y・cosψ・cosφ+P_z・sinφ
z座標 : P_x・sinψ・sinφ-P_y・cosψ・sinφ+P_z・cosφ
となります。

ここで、置き換えた変数を順次、元に戻します。
P_x、P_y、P_z を Px”、Py”、Pz” に、
Px”、Py”、Pz” を Px’、Py’、Pz’ に、
最後に、平行移動を戻して Px’、Py’、Pz’ を Px、Py、Pz に直します。

先ず、中心点(Sx,Sy,Sz)が原点にくるよう全体を平行移動させます。
(一番最後に元に戻します)
始点(Px,Py,Pz)は、(Px-Sx,Py-Sy,Pz-Sz)に移ります。この座標を(Px',Py',Pz')とします。

次に、回転軸ベクトル(Ax Ay Az)を回転させ、x軸に合致させます。それには二回の
回転変換が必要です。
最初に、ベクトル(Ax Ay Az)と、x軸方向単位ベクトル(1 0 0)のなす平面の法線ベクトルが
z軸に合うよう、x軸を回転させます(その角度をφとします)。
すると、回転軸ベクトルはx-y平面上に乗るので、それがx軸...続きを読む

Qフーリエ変換について教えてください

フーリエ変換をすると横軸が時間から周波数になるのはわかったのですが、縦軸が何になるのかわかりません。

一般的に縦軸はなにになるのでしょうか?

また横軸が時間で、縦軸が距離をフーリエ変換したら縦軸は何になるのでしょうか?

よろしくお願いします。

Aベストアンサー

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が時間で縦軸が距離の場合・・・
フーリエ変換の結果は、距離を表す時間関数の周波数成分です。

フーリエ変換の対象の関数は別に時間関数でなければならないということは
ありません。従って、フーリエ変換の結果は適用する人が解釈(定義)すれば
よいと思います。
たとえば、
時間関数をフーリエ変換し、その結果の絶対値の対数のフーリエ変換を
することもあります。これの結果には、発明者らがケプストラムという名前
をつけています。Cepstrum は Spectrum から作った造語です。

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング