

いつもお世話になっています。
線形代数の復習をしていて、一つ疑問が生じました。
いくつかの本を当たってみたのですが、どの本にも「基底=互いに一次独立+任意のベクトルがそれらの線形結合で表示可能」と書かれていましたが、今まで「一次独立だけど、基底じゃなかった」というような問題に当たったことがありません。しかしながら、わざわざ一次独立+αという条件が付け加えられているということは、一次独立という性質だけでは、基底となる条件を満たしていないということなのでしょうか?
ご教授、よろしくお願いします。
No.2ベストアンサー
- 回答日時:
n次元空間でn個のベクトルx1,・・・,xnが一次独立とする。
任意のベクトルyをとると、x1,・・・,xn,yは一次従属。
a1x1+・・・+anxn+by=0
とすると、a1,・・・,an,bのうち、どれかは0でない。
b=0とすると、a1x1+・・・+anxn=0となるので、a1=・・・=an=0
となってしまう。
よってb≠0であり、
y=(-a1/b)x1+・・・+(-an/b)xn
と表せる。
表示の一意性は、一次独立なことから分かる。
基底=一次独立で、それらの個数が次元に等しい
で良いのではないでしょうか。
任意のベクトルがそれらの線形結合で表示可能=それらの個数が次元に等しい
ということで。
単に一次独立だけでは、その個数が次元より小さい場合は基底には
なりません。
>任意のベクトルがそれらの線形結合で表示可能=それらの個数が次元に等しいということで。
ベクトルの個数が次元と合わない練習問題に当たったこともなく、そのことの説明に触れた参考書も見かけませんでした。普通はつまづくようなところではない、ということでしょうか・・・。
証明を混ぜていただいたおかげで、納得できました。
詳しい説明ありがとうございました。
No.3
- 回答日時:
既に回答が出てますが。
一般に、一次独立なベクトルの集合に対して、その一次結合の全体は一つの部分ベクトル空間を作り、一次独立なベクトルの集合はその部分ベクトル空間の基底になります。
一次独立なベクトルの集合が元々のベクトル空間の基底であるためには、一次結合で作られる部分ベクトル空間が全体であることが必要です。
なお、一次独立なベクトルの集合については、ベクトルを追加してやることで基底にできます。
>一般に、一次独立なベクトルの集合に対して、その一次結合の全体は一つの部分ベクトル空間を作り、一次独立なベクトルの集合はその部分ベクトル空間の基底になります。
部分空間・・・お恥ずかしながら、学校で線形代数をやったときに真剣に学ばなかったので、さっぱりイメージがつかめません・・・≪部分空間≫だったり、≪固有なんとか≫だったり、聞いただけで体が拒否反応を示しているような気がします・・・^^;
復習して、しっかりイメージをつかめるようにがんばります。
ご回答ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
n次元ベクトルの外積の定義
-
微積分の記号δ、d、Δ、∂の違い
-
行列とベクトルの表記の仕方に...
-
「ノルム、絶対値、長さ」の違...
-
2つに直交する単位ベクトル
-
平面の交線の方程式
-
「任意」ってどういう意味?
-
座標系の奥(手前)方向の書き方
-
ナブラ ラプラシアン
-
なぜ2乗するのか
-
2次元における外積について
-
平面のベクトル内積=0で垂直...
-
一次独立だけど、基底にならな...
-
複素数の絶対値の性質について
-
一本のベクトルに直交するベク...
-
行列式が1とはどういう意味です...
-
高校数学の範囲外の知識は大学...
-
縦ベクトルと横ベクトルの違い...
-
ベクトルについて
-
Aはn次正方行列とする。零行列...
おすすめ情報