No.1ベストアンサー
- 回答日時:
>(x,y)=(0,0)のときヘシアンが0になってしまいました。
>ヘシアンが0の場合どうやって極値が存在することを調べればよいのでしょうか。
この場合の(x,y)=(0,0)は鞍点f(0,0)=0になりますので極値の停留点にはなりません。
これを調べるには(x,y)=(0,0)の近傍でf(x,y)の符号が正にも負にもなることを示せばいいです。
x=t+Δt,y=-(t+Δt)とおいてt→0とすると
g'(t)=6(2t^3-9t),g'(0)=0
g"(t)=18(2t^2-3),g"(0)=-54
f(x,y)=f(t+Δt,-(t+Δt))=g(t+Δt)→g(0)+g'(0)Δt+(g"(0)/2)Δt^2+R3=-27Δt^2<0
f(x,y)はx=-y=t(t→0)の近傍で負になる。
また
x=2(t+Δt),y=(t+Δt)とおいてt→0とすると
h(t)=18t^4
h(t+Δt)=18(t+Δt)^4,h(Δt)=18Δt^4
f(x,y)=f(2(t+Δt),(t+Δt))=h(t+Δt)→18Δt^4>0
f(x,y)はx=2y=t(t→0)の近傍で正になる。
以上から(x,y)→(0,0)への近付き方により(0,0)の近傍でf(x,y)が負の場合と、正の場合がある。つまり(0,0)は極値点ではなく、鞍点であると言える。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
これ何て呼びますか
あなたのお住いの地域で、これ、何て呼びますか?
-
メモのコツを教えてください!
メモを取るのが苦手です。 急いでメモすると内容がごちゃごちゃになってしまったり、ひどいときには全く読めない時もあります。
-
許せない心理テスト
私は「あなたの目の前にケーキがあります。ろうそくは何本刺さっていますか」と言われ「12本」と答えたら「ろうそくの数はあなたが好きな人の数です」と言われ浮気者扱いされたことをいまだに根に持っています。
-
あなたの習慣について教えてください!!
あなたが習慣だと思って実践しているものを共有してくださいませんか? 筋肉トレーニングでも朝シャワーでも、あなたが習慣だなと思えば何でも構いません
-
極値の判定でヘッシアンの値が0になってしまった場合
数学
-
臨界点でHessianが0の時の極値の判定
数学
-
ヘッシアンが0になった場合
数学
-
-
4
f(x,y)=x^2-2xy^2+y^4-y^5 この関数の極値や鞍点の求め方を教えてください! 答
数学
-
5
e^(x^2)の積分に関して
数学
-
6
ワードで循環小数
Word(ワード)
-
7
2つに直交する単位ベクトル
数学
-
8
単位法線ベクトルの問題なんですが。。。
数学
-
9
有限長ソレノイドコイルの中心軸上磁場について
物理学
-
10
2変数関数の極値について
数学
-
11
質量m 半径aの一様な円環の慣性モーメントの求め方を教えてください。 回答には円環はすべての部分が中
物理学
-
12
数学についていくつか質問させてください。 ①固有ベクトルの符号が解答と逆になってしまうのですが、これ
大学・短大
-
13
線形代数です。 正方行列A,BがAB=BAであるとき、AとBは可換であるという。次の行列と可換な行列
数学
-
14
重積分で曲面間の体積を求める問題
数学
-
15
cos2Xをマクローリン展開すると?
その他(自然科学)
-
16
等吸収点
化学
-
17
eのマイナス無限大乗
数学
-
18
2変数関数のロピタルの定理
数学
-
19
lim[n→∞](1-1/n)^n=1/e について
数学
-
20
面積分
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
ヘシアンが0の場合どうやって極...
-
複雑な家庭とは
-
「互いに素」の定義…「1と2は互...
-
1未満と1以下の違い
-
無限から無限を引いたら何にな...
-
p⇒q=(¬p)∨qについて
-
eの0乗は1ってどういう原理です...
-
「logx^2=2logx」が間違って...
-
べき乗
-
2変数関数の極値について
-
負数の累乗は???
-
1wordとは、何文字ですか?
-
日本語 ことば ひとまわり ふた...
-
数字の1とは何なのか?
-
行列式の起源
-
0^1(0の1乗)はいくつでしょ...
-
ACCESS VBAでインポート定義の場所
-
最大元と極大元の定義の違いが...
-
数学の質問です loge 3=1.1に...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
無限から無限を引いたら何にな...
-
複雑な家庭とは
-
1未満と1以下の違い
-
「互いに素」の定義…「1と2は互...
-
eの0乗は1ってどういう原理です...
-
べき乗
-
「logx^2=2logx」が間違って...
-
日本語 ことば ひとまわり ふた...
-
直和分解とは? 同値関係、同値類
-
p⇒q=(¬p)∨qについて
-
最大元と極大元の定義の違いが...
-
なぜ、直角三角形ではないのにs...
-
ヘシアンが0の場合どうやって極...
-
ACCESS IIF関数 複数条件の設...
-
数字の1とは何なのか?
-
P(A∩B)=PA(B)×P(A) に何故なる...
-
ACCESS VBAでインポート定義の場所
-
0^1(0の1乗)はいくつでしょ...
-
√6=√(-2)(-3)=√(-...
おすすめ情報