楕円球体の三重積分が ∫∫∫dxdydz で
積分領域が K={(x,y,z)|(x^2/a^2)+(y^2/b^2)+(z^2/c^2)≦1}
と、与えられています。
この問題を極座標変換を使って解けと教科書に書いてあるのですが、
x=r(sinθ)(cosφ)
y=r(sinθ)(sinφ)
z=r(sinθ)
というように、変数(r,θ,φ)に変換したときの積分領域K’がわかりません。
θやφについては
0≦θ≦π
0≦φ≦2π
になるだろうとなんとなく予想できるのですが、
rに関してはどのような範囲になるか全くわかりません。
どなたか説明も入れてよろしくお願いします。
No.1ベストアンサー
- 回答日時:
まず極座標のzの式が違います。
x=r(sinθ)(cosφ)
y=r(sinθ)(sinφ)
z=r(cosθ)
変数変換は
x=ra(sinθ)(cosφ)
y=rb(sinθ)(sinφ)
z=rc(cosθ)
とおくと
0≦θ≦π
0≦φ≦2π
0≦r≦1
となります。
ヤコビアン|J|=∂(x,y,z)/∂(r,θ,φ)=abc(r^2)sinθ
V=abc∫[0→2π]dφ∫[0→π]sinθdθ∫[0→1]r^2dr
=2πabc*{cos(0)-cos(π)}*{(1^3)/3}
=2πabc*2*(1/3)=4πabc/3
No.2
- 回答日時:
A#1の補足ですが
>rに関してはどのような範囲になるか全くわかりません。
rの範囲は
(x^2/a^2)+(y^2/b^2)+(z^2/c^2)≦1
に
x=ra(sinθ)(cosφ)
y=rb(sinθ)(sinφ)
z=rc(cosθ)
を代入してやると
r^2≦1
が出てきます。
ここで、0≦θ≦π、0≦φ≦2πとするとr≧0で良いので
0≦r≦1
とrの範囲が出てきます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
都道府県穴埋めゲーム
都道府県の名前を1人1つずつ投稿してください。全ての都道府県が出たら締め切ります!
-
3重積分 楕円体での変数変換
数学
-
e^(x^2)の積分に関して
数学
-
重積分について
数学
-
-
4
「図のような三角錐の体積を重積分を使い計算して求めよ」という問題で、画像のように計算して答えが一致し
数学
-
5
(x^3/√(x^2+1))の不定積分
数学
-
6
ヤコビアンの定義について
数学
-
7
標準反応エントロピー
化学
-
8
2重積分の変数変換の範囲についてです。
数学
-
9
ヘシアンが0の場合どうやって極値が存在することを調べればよいのでしょう
数学
-
10
楕円の変数変換
数学
-
11
楕円の二重積分について
数学
-
12
e^(-x^2)の積分
数学
-
13
「ノルム、絶対値、長さ」の違いについて
数学
-
14
加速度と角加速度の関係について
物理学
-
15
0の積分
数学
-
16
電流と磁場の問題
物理学
-
17
楕円の重積分(3)
数学
-
18
関数のグラフでy'''はなにを意味するのですか?
数学
-
19
重積分の意味
数学
-
20
中が中空の球の慣性モーメントの求め方について
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
底辺と角度から、高さを求める。
-
sin²θとsinθ²と(sinθ)²って全部...
-
どんな整数であってもsin(nπ)=0...
-
2つの円の一部が重なった図
-
(2)で質問なのですが、なんでsi...
-
数学 sin1/2は何を表しているの...
-
sin(乗数)(角度)の計算の仕方に...
-
積分 ∫√(4-x^2)dxについて
-
sinのマイナス1乗の計算方法を...
-
sin2tの積分の仕方わかる人いま...
-
積分について教えてください
-
2cos二乗Θ+3sinΘ-3=0を解け。
-
sinx=cosxの解き方。
-
三角関数の答えが1以上になるの...
-
数2の問題です θ=7/6π のsinθ...
-
数IIの問題で分からないです
-
tを消したい!!
-
0°≦θ≦180° sinθ=0° のとき、 θ=...
-
sin1の1って一体・・・
-
簡単な偏微分についての質問です。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin²θとsinθ²と(sinθ)²って全部...
-
周期の最小値?
-
底辺と角度から、高さを求める。
-
2つの円の一部が重なった図
-
sinωTをTで積分。
-
eの積分について
-
積分 ∫√(4-x^2)dxについて
-
sinx=cosxの解き方。
-
e^(-x)*|sinx| これを積分する...
-
sinのマイナス1乗の計算方法を...
-
数学 sin1/2は何を表しているの...
-
f(x)=(px+q)sin(2x)/(ax+b) の問題
-
大学受験時のsin,log,lim,xの表記
-
三角関数の答えが1以上になるの...
-
(sinx)^6の積分を教えてください
-
『楕円球体の三重積分を極座標...
-
広義積分
-
これsin75°を求めよで答え √6+...
-
sin2tの積分の仕方わかる人いま...
-
1/tan^3(x)の積分 どちらが正し...
おすすめ情報