【先着1,000名様!】1,000円分をプレゼント!

中が中空の球(球殻)の慣性モーメントの求め方がわかりません。
球の質量をM、半径をaとすると2/3Ma^2となるとは思うのですが、求める過程がわからないのです。
教えてください。

A 回答 (2件)

球の中心を原点とした一般的な直交座標と極座標を考えて下さい。



r≠aではρ=0なのでr=aだけを考えればよく、面積分に帰着するわけです。
球の質量はr=aに一様分布なので(面)密度ρ=M/(4πa^2)となります。

それで、座標Ω=(θ,φ)において、z回転軸周りでは面積素片はdS=a^2*sinθdθdφになりますよね。さらに軸からの距離r'=a*sinθです。

あとはI=Mr^2に沿って計算すれば、
(0<θ<π, 0<φ<2π)

I=∬ρr'^2 dS
=ρ∬(a*sinθ)^2*a^2*sinθdθdφ
=ρa^4∬(sinθ)^3 dθdφ
=Ma^2/(4π)*2π∫(sinθ)^3 dθ
=Ma^2/2*(4/3)
=(2/3)Ma^2

と、こんなもんでよろしいのではないでしょうか。
慣性モーメントの計算なんて7年ぶりくらいです。ああ、間違ってないといいけど・・・(自信なくてすみません)

この回答への補足

回答ありがとうございます。
自分で計算してみて何とかできました。
でもなんかちょっと難しいですよね。こう求めるのは...
ちょっとお聞きしたいんですけど、質量と半径がまったく同じで一方は中まで密度が一様な球(慣性モーメント2/5Ma^2)ともう一方は中空である球(慣性モーメント2/3Ma^2)。
これらの2つの球のうち同じ角度の斜面なら転がすとどちらが遅く転がるんですか?
私としては質量が同じだから同じ速さで転がるとは思っているんですけど...
お願いします。

補足日時:2002/06/24 18:32
    • good
    • 7

詰まった球の慣性モーメントを御存知なら別解があります。

こっちの方がずっと面倒という説もありますが、高校生の時に数学のよく出来る同級生にこのやり方を教わってかなり感動したので・・・。

外半径R、内半径rの球殻の慣性モーメントは、外半径の球の慣性モーメントから内半径の球の慣性モーメントを引くことによって、I=(2/5)M(R^5-r^5)/(R^3-r^3)となります。これはr/R=xと置くと、I=(2/5)MR^2(1-x^5)/(1-x^3)変形できます。これのx→1の極限をとれば、求めたい厚さ0の球殻の慣性モーメントになります。(1-x^5)/(1-x^3)はx→1で0/0の不定形ですが、ロピタルの定理を使うと5/3となることがわかります。というわけで、結局I=(2/3)MR^2。

同じ重さ、半径の中空の球と詰まった球では滑らない限り、中空の方がゆっくり転がりますよ。慣性モーメントがでかいわけですから、回転の運動エネルギーがより多く必要になるので。
    • good
    • 4

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q円盤の慣性モーメントが求めれません。

面密度ρの一様な円盤の中心周りの慣性モーメント

J=(mR^2)/2
となるのですがどうしてなるのか分かりません。

よろしくお願いします!

Aベストアンサー

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

で求まります。実際にやってみます。
dA=π(r+dr)^2-πr^2
=π(r^2+2rdr+dr^2-r^2)
=π(2rdr+dr^2) (5)

となるんですが、drはめっちゃ小さいんで2乗の項は無視します。
dA=2πrdr (6)

ですね。この式(6)を式(3)に代入します。
dm=2πρrdr (7)

式(7)を式(2)に代入します。
J=∫r^2・2πρrdr
=2πρ∫r^3dr (8)

見にくいんで書きませんでしたが、rの積分区間は0~Rです。
回転軸から端っこまでですから♪
積分を実行すると、
J=(πρR^4)/2 (9)

になります。
ここで、円盤の質量mは次式で与えられます。
m=πρR^2 (10)

式(10)を式(9)に代入すれば出来上がりです♪
J=(mR^2)/2 (11)

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

...続きを読む

Q球の慣性モーメントについて

こんにちは!!工学部に通う大学一年生です。現在大学の物理学で慣性モーメントについて勉強しています。そこで下のような問題を解きました。

「球(質量M、半径R)の1つの直径周りの慣性モーメントを求めよ。

という問題を解いてみて解答を見ると
球の密度をρ=M/(4/3)πR^3とする。球の中心から高さzからz+dzの間にある厚さdzの円盤の質量はρπ(R^2-z^2)dz
よって慣性モーメントはi=(1/2)ρπ(R^2-z^2)dz(R^2-z^2)
これを積分してI=∫idz=(2/5)MR^2
(積分区間は-R≦z≦R)

となっていました。解答の流れと計算はわかるのですが、i=(1/2)ρπ(R^2-z^2)dz(R^2-z^2)の式に何故(1/2)がつくのかわかりません。
教えてくださいm(_ _)m

Aベストアンサー

同じ問題を解いているサイトがありました。
http://www14.plala.or.jp/phys/mechanics/35.html

1/2は円盤の慣性モーメントの表現として含まれています。

半径r、質量mの円盤を中心を通る面に垂直な軸の周りに回転させるときの慣性モーメントが(1/2)mr^2であるということです。1/2がなければmr^2になりますね。これは距離rの所に質量mがあるという場合です。円盤ではなくてリングの場合になります。
1/2がついているということは円盤の場合、中心からの距離がr/√2の所に質量が集中しているとしたときと同等だということです。質量が広がりを持って分布している物体の回転を、同じ質量を持った、回転について同等な質点の回転に読み直しています。半径rよりも小さい所に質量が分布していますから当然前に着く数字は1よりも小さくなります。球の場合は円盤の場合よりも多くの質量が中心の近くに分布していますから前に付く数字は1/2よりも小さくなります。2/5<1/2ですね。3/5とか4/5が出てくればおかしいということが分かります。
慣性モーメントを単に積分で定義された量とだけで理解しているとこういうチェックが出来ません。

運動方程式 力=質量×加速度
に対応する回転に関する運動方程式は
モーメント=慣性モーメント×角加速度
です。この式は
力=質量×加速度 の両辺に回転半径rをかけたあと
加速度=半径×角加速度
と書き換えれば出てきます。
(rの掛け算は本当はベクトル積ですが普通の掛け算で書いています。)

同じ問題を解いているサイトがありました。
http://www14.plala.or.jp/phys/mechanics/35.html

1/2は円盤の慣性モーメントの表現として含まれています。

半径r、質量mの円盤を中心を通る面に垂直な軸の周りに回転させるときの慣性モーメントが(1/2)mr^2であるということです。1/2がなければmr^2になりますね。これは距離rの所に質量mがあるという場合です。円盤ではなくてリングの場合になります。
1/2がついているということは円盤の場合、中心からの距離がr/√2の所に質量が...続きを読む

Q中空球の慣性モーメント

外径20cm,内径15cm,質量4kgの中空球の球心を通る慣性モーメントを求めたいのですが、公式は使えてもなぜそうなるのかが理解できません。分かり難い質問ですみませんが、どなたか解説お願いします。

Aベストアンサー

#3、#4、#5の者です。
私なりに解明できましたので、以下に説明します。

まず、半径r(cm)、幅w(cm)、面密度ρ(kg/cm^2)のリング(円)が、円の面と同じ(平行な)面内で、円の中心の周りに回転する慣性モーメントAを求めましょう。

2πrρw・r^2=2πρw・r^3

さて、次は地球儀を考えればよいわけです。
地球儀の半径は、先ほどと区別するために、大文字のR(m)としておきましょう。

緯度がθのところのリングの半径rは、
r=Rcosθ
と書き換えることが出来ます。

この部分のリングの慣性モーメントは、
2πρw・r^3=2πρw・R^3・(cosθ)^3

さて、
リングの幅方向は、θ方向と平行であるから、θで上記を積分すれば、すなわち、無限個のすべてのリングを足し算して、中空球について求めたことになる。

その無限個の各リングの幅wは、
w→R・dθ
と置き換えることが出来るので、

中空球の慣性モーメント
=∫(-π/2→+π/2)2πρ・R^3・(cosθ)^3・R・dθ
=2πρ・R^4・∫(-π/2→+π/2)(cosθ)^3・dθ
=2πρ・R^4・∫(-π/2→+π/2)((cos3θ+3cosθ)/4)・dθ
=2πρ・R^4×4/3
=2/3・πρ・R^4

以上で、無限に薄い中空球の慣性モーメントが求まった。
あとは、これを厚さ方向(R)で積分すれば、球の慣性モーメントになる。

I=∫(0→R)2/3・πρ・R^4・dR
 =8/15・πρ・R^5
(球の慣性モーメントの公式のできあがり)

↑ここで、厚さ方向の積分を行なったので、ρは面密度でなく通常の密度に変更になっている。
(文字表記は、そのままにしました)

では、ここで、球の質量Mを用いて、ρを式から消去してみましょう。

球の体積は4/3・πR^3であるから、
密度ρは
ρ=M/(4/3・πR^3)である。

これを
I=8/15・πρ・R^5 に代入して、

I=8/15・πρ・R^5
 =8/15・π・R^5×M÷(4/3・πR^3)
 =2/5・MR^2

となり、#2さん、および、#5のリンクの公式と同じものが得られました。

あとは、計算だけですので、以降は#5の考え方でどうぞ。

#3、#4、#5の者です。
私なりに解明できましたので、以下に説明します。

まず、半径r(cm)、幅w(cm)、面密度ρ(kg/cm^2)のリング(円)が、円の面と同じ(平行な)面内で、円の中心の周りに回転する慣性モーメントAを求めましょう。

2πrρw・r^2=2πρw・r^3

さて、次は地球儀を考えればよいわけです。
地球儀の半径は、先ほどと区別するために、大文字のR(m)としておきましょう。

緯度がθのところのリングの半径rは、
r=Rcosθ
と書き換えることが出来ます。
...続きを読む

Q球の慣性モーメント

 球のモーメントを求める時、球の中の薄い円板を考え、それを積分していくと思います。
この時
2∫r^2dm
にr^2をそのままにしてdmを薄い円板質量を入れて求めると教科書の答えが違ってくるのは何故でしょう?
教科書は
円板の慣性モーメントdI=r^2/2×dm
を考え、2∫(円板の慣性モーメント)
と入れて求めています。
 慣性モーメントの公式は ∫r^2dm
なのではじめの方法も間違っていない気がするのですが、2番目の方が正しいのですよね?
 はじめの方法は何が行けないのでしょうか?
 もし分かる方がいらっしゃったら教えてください。

Aベストアンサー

この場合のrとはなんでしょう?
z軸からの距離でなければなりません。
z軸の周りの慣性モーメントを求めたい(球の対称性によりどこを軸にとっても同じ)わけですから。
だから、I=ΣΔmr^2=∫r^2ρdV
=∫∫∫r^2ρdxdydz=∫∫∫ρ(x^2+y^2)dxdydz=Iz
として計算すべきものです。

もし、I=2∫r^2dmとして計算するとどうなるでしょう?これは、2倍しているのは左右で二つあるからだと思います。∫r^2dmのdmを、例えばx軸上の距離rの位置にある、x軸に垂直な薄い円板の質量としてしまうと、その薄い円板上の質点の
部分部分によって、z軸からの距離は変わってきますよね。それなのに、円板を構成する全ての質点がz軸から距離rにある、としてしまっているのがr^2dmという式にほかなりません。つまり、z軸から距離rにあるのは
円板を構成する質点のなかではx軸上の一点だけで、
そのほかの円板上の質点はz軸からの距離がrより大きいのです。
だから、r^2dmのdmに微小円板の質量を入れてはいけないのです。

dI=r^2/2×dmを使う場合は、z軸の周りの円板の微小慣性モーメントは既に計算されているから、それをdmについて加え合わせる分には問題ありません。

参考までに,Iz=∫ρ(x^2+y^2)dV
Iy=∫ρ(x^2+z^2)dV,Ix=∫ρ(y^2+z^2)dV
Ix=Iy=Izより、
Iz=(Ix+Iy+Iz)/3=∫2/3ρr^2dV(このrは球の半径方向)
=∫(2/3)ρr^2(4πr^2dr)=2/5Ma^2 (a=球の半径)

この場合のrとはなんでしょう?
z軸からの距離でなければなりません。
z軸の周りの慣性モーメントを求めたい(球の対称性によりどこを軸にとっても同じ)わけですから。
だから、I=ΣΔmr^2=∫r^2ρdV
=∫∫∫r^2ρdxdydz=∫∫∫ρ(x^2+y^2)dxdydz=Iz
として計算すべきものです。

もし、I=2∫r^2dmとして計算するとどうなるでしょう?これは、2倍しているのは左右で二つあるからだと思います。∫r^2dmのdmを、例えばx軸上の距離rの位置にある、x軸に垂直な薄い円板の質量としてしまうと、その薄い円板上の質点の
部分部...続きを読む

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q慣性モーメント

厚さを無視できる円筒や円環や球殻の慣性モーメントはどうやって計算すればよいのでしょうか?

Aベストアンサー

replay さんはすこし誤解されているようです.

慣性モーメントは,
(1)  (微小部分の質量)×(軸からの距離)
を加え合わせた(連続的に質量が分布しているなら積分した)ものです.
極座標系で表したときに,r は原点からの距離であって,
軸からの距離ではありません.
したがって
(2)  I = ∫ρr^2 r^2 sinθdrdθdφ
と書いてはいけません.

後半は,球と球殻とがごっちゃになっているようです.
球殻ならば r は a で一定のままです.
r についてゼロから a まで積分しちゃっちゃいけません.
(投稿しようとしたら,訂正が投稿されていました).
さらに密度についても,体積密度と面積密度を混同されています.
また,慣性モーメントの次元は (質量)×(長さ)^2 ですが,
最終結果ではそうなっていませんので,
結果が誤りであることは一目でわかります.

厚さを無視できる円筒や円環は,
軸の周りの慣性モーメントということなら簡単.
すべての質量が軸からの距離から a の場所にあります.
したがって,
(2)  I = Ma^2

球殻はちょっと面倒.

    A
    │
    C   B
    │  /
    │θ/
    │/
    O

図の様に極座標を取ります.AとBとは球の表面.
BC = a sinθ
θ~θ+dθ の部分の球殻面積は (a dθ)×(2πa sinθ) = 2πa^2 sinθ dθ
単位球殻面積あたりの質量は M/4πa^2.
したがって,
(3)  I = ∫{0~π} (M/4πa^2) (a sinθ)^2 (2πa^2 sinθ dθ)
     = (2/3)Ma^2
です.

> 内半径b外半径aとして厚さのある球殻の積分をして
> b→aの極限から計算すると
> I=2/3×Ma^2となりました。

もちろんこれでもOKですね.

replay さんはすこし誤解されているようです.

慣性モーメントは,
(1)  (微小部分の質量)×(軸からの距離)
を加え合わせた(連続的に質量が分布しているなら積分した)ものです.
極座標系で表したときに,r は原点からの距離であって,
軸からの距離ではありません.
したがって
(2)  I = ∫ρr^2 r^2 sinθdrdθdφ
と書いてはいけません.

後半は,球と球殻とがごっちゃになっているようです.
球殻ならば r は a で一定のままです.
r についてゼロから a まで積分しちゃっちゃいけません.
(投...続きを読む

Q加速度と角加速度の関係について

速度と角速度の関係は
中心から質点までの距離がr,質点の速度がv,とすると
角速度ω=v/r [rad/s]
になると思うのですが,
加速度と角加速度の関係は
中心から質点までの距離がr,質点の加速度がa,とすると
角速度α=a/r [rad/s^2]
となるのでしょうか?
ご教示よろしくお願い致します。

Aベストアンサー

半径rが定数とすれば、その通りです。
加速度、角加速度はそれぞれ速度、角速度の単位時間の変化量(時間微分)ですので、加速度は「a=dv/dt」、角加速度は「α=dω/dt」と表せます。
同時に、角速度の式「ω=v/r」の両辺を時間で微分すれば「dω/dt=(dv/dt)/r」となり、この式はすなわち「α=a/r」となります。
ただし半径rそのものが時間関数r(t)の場合はこの限りではありません。

Q回転運動の運動エネルギーについて困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています.

問題は,写真に示すような長さl,質量mの一様な剛体棒の一端Oが速度vで水平に移動し,そのO点を中心に角速度(θ')で回転している.棒の運動エネルギーを次の中から選べ.ただし,棒の太さは長さに対して十分に細いものとする.

という問題で,解答は

(1/6)・m・l^2・(θ')^2 + (1/2)・m・v^2・ + (1/2)・m・l・v・(θ')・cosθ

です.解説には並進運動と回転運動とに分けて解説してあり、

[並進運動]
Tr= (1/2)・m・v^2 となるのは理解できます.

[回転運動]
剛体の回転中心Oにおける慣性モーメントIo=(1/3)・m・l^2
となるのは理解できるのですが,その後の 回転中心Oまわりの回転エネルギーToは,

To=(1/6)・m・l^2・(θ')^2 + (1/2)・m・l・v・(θ')・cosθ のところで,

なぜ第2項がでてくるのかが分かりません.

回転の運動エネルギーは
(1/2)・(Io)・(θ')^2なのに,なぜ第2項が出てくるのでしょうか.
どなたか助けてください.お願いします.

回転運動の運動エネルギーについてよく分からないところがあり困っています。

回転運動の運動エネルギーについてよく分からないところがあり困っています.

問題は,写真に示すような長さl,質量mの一様な剛体棒の一端Oが速度vで水平に移動し,そのO点を中心に角速度(θ')で回転している.棒の運動エネルギーを次の中から選べ.ただし,棒の太さは長さに対して十分に細いものとする.

という問題で,解答は

(1/6)・m・l^2・(θ')^2 + (1/2)・m・v^2・ + (1/2)・m・l・v・(θ')・cosθ

です.解説には並進運動と回...続きを読む

Aベストアンサー

この後は質問者さんのレスポンスを待ちたいと思いますが・・・・

>解答がこれを回転エネルギーの方に入れて並進と回転の分離ができているという表現をしているのはおかしいのです。

回転しない、つまり、角θを一定に保ったままの運動で現れない項を、「回転することによって生じてくる項」という意味で回転のエネルギーとしてまとめただけだと思いますが、そんなにおかしいですか?

#1にしたがって計算すれば、重心運動の運動エネルギー は

(1/2) M [ (V + (l/2)θ'cosθ)^2 + ((l/2)θ'sinθ)^2 ]

になります。このまま解釈すれば意味は明確です。

クロスタームと称しているものはこれの水平成分から出てくるもので、水平成分にはO点まわりの回転による成分とO点の並進による成分の二つが共に寄与しているので、そのクロスタームが出てくるのは当たり前です。

これを展開して分割し、

(1/2) M [ V^2 + V l θ'cosθ + (l^2/4)θ'^2(cosθ)^2 + (l^2/4)θ'^2(sinθ)^2 ]
=(1/2) M [ V^2 + V l θ'cosθ + (l^2/4)θ'^2 ]
=(1/2) M V^2 + (1/2) M V l θ'cosθ + (1/8) M l^2 θ'^2

この最後の項を回転のエネルギー(1/2)(1/12)Ml^2 θ'^2 = (1/24)M l^2 θ'^2 とあわせて

(1/8) M l^2 θ'^2 + (1/24)M l^2 θ'^2 = (1/2) [(1/3)Ml^2 ] θ'^2

と書き直してしまうから意味不明な項が残るんです。


速さVで動いている台から相対速度uで質量mの質点を打ちだしたときに、質点の運動エネルギーは

(1/2)m (V+u)^2 = (1/2) mV^2 + mVu + (1/2)mu^2

で、ここからmVuだけとり出してこのクロスタームにどういう意味があるかといわれても困るでしょう。
それと同じことです。

この後は質問者さんのレスポンスを待ちたいと思いますが・・・・

>解答がこれを回転エネルギーの方に入れて並進と回転の分離ができているという表現をしているのはおかしいのです。

回転しない、つまり、角θを一定に保ったままの運動で現れない項を、「回転することによって生じてくる項」という意味で回転のエネルギーとしてまとめただけだと思いますが、そんなにおかしいですか?

#1にしたがって計算すれば、重心運動の運動エネルギー は

(1/2) M [ (V + (l/2)θ'cosθ)^2 + ((l/2)θ'sinθ)^2 ]

になります。...続きを読む

Q回転運動のエネルギー

大学に入って初めて剛体の力学について習ったのですが、高校の物理と違ってよく分かりません。
回転運動のエネルギーを求める公式とその証明を教えて下さい。お願いします。

Aベストアンサー

回転運動のエネルギーの証明ということですが
回転運動といっても基本的には運動エネルギーなのです。ある軸を中心に剛体がくるくる回っている時の
エネルギーは軸の周りの慣性モーメントIとして
1/2Iω^2です。これの証明は、まず剛体の各微小部分
を考えます。その各微小部分(質量Δm)の運動エネルギーは
1/2Δmv^2=1/2Δm(rω)^2となります。v=rωというのは微小部分の速度ですが、その微小部分が回転軸からr離れていて、そして剛体は角速度ωでまわっているからです。
軸から距離r+Δrのところにある微小部分なら、その速度は(r+Δr)ωです。
それで、微小部分の運動エネルギーを全て加えれば、
それが結局回転のエネルギーということになります。
U=Σ1/2Δmv^2=Σ1/2Δm(rω)^2=1/2(ΣΔmr^2)ω^2

ここで、ΣΔmr^2というのは、軸から距離rはなれたところの微小部分の質量Δmに、その軸からの距離rの2乗をかけて、それを剛体のあらゆる微小部分について加えたということであり、それは結局軸の周りの慣性モーメントを意味します。I=ΣΔm(r)r^2よって
U=1/2(ΣΔmr^2)ω^2=1/2Iω^2となります。

回転運動のエネルギーの証明ということですが
回転運動といっても基本的には運動エネルギーなのです。ある軸を中心に剛体がくるくる回っている時の
エネルギーは軸の周りの慣性モーメントIとして
1/2Iω^2です。これの証明は、まず剛体の各微小部分
を考えます。その各微小部分(質量Δm)の運動エネルギーは
1/2Δmv^2=1/2Δm(rω)^2となります。v=rωというのは微小部分の速度ですが、その微小部分が回転軸からr離れていて、そして剛体は角速度ωでまわっているからです。
軸から距離r+Δrのところにある微小部分な...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。


人気Q&Aランキング