あなたの「必」の書き順を教えてください

中が中空の球(球殻)の慣性モーメントの求め方がわかりません。
球の質量をM、半径をaとすると2/3Ma^2となるとは思うのですが、求める過程がわからないのです。
教えてください。

A 回答 (2件)

球の中心を原点とした一般的な直交座標と極座標を考えて下さい。



r≠aではρ=0なのでr=aだけを考えればよく、面積分に帰着するわけです。
球の質量はr=aに一様分布なので(面)密度ρ=M/(4πa^2)となります。

それで、座標Ω=(θ,φ)において、z回転軸周りでは面積素片はdS=a^2*sinθdθdφになりますよね。さらに軸からの距離r'=a*sinθです。

あとはI=Mr^2に沿って計算すれば、
(0<θ<π, 0<φ<2π)

I=∬ρr'^2 dS
=ρ∬(a*sinθ)^2*a^2*sinθdθdφ
=ρa^4∬(sinθ)^3 dθdφ
=Ma^2/(4π)*2π∫(sinθ)^3 dθ
=Ma^2/2*(4/3)
=(2/3)Ma^2

と、こんなもんでよろしいのではないでしょうか。
慣性モーメントの計算なんて7年ぶりくらいです。ああ、間違ってないといいけど・・・(自信なくてすみません)

この回答への補足

回答ありがとうございます。
自分で計算してみて何とかできました。
でもなんかちょっと難しいですよね。こう求めるのは...
ちょっとお聞きしたいんですけど、質量と半径がまったく同じで一方は中まで密度が一様な球(慣性モーメント2/5Ma^2)ともう一方は中空である球(慣性モーメント2/3Ma^2)。
これらの2つの球のうち同じ角度の斜面なら転がすとどちらが遅く転がるんですか?
私としては質量が同じだから同じ速さで転がるとは思っているんですけど...
お願いします。

補足日時:2002/06/24 18:32
    • good
    • 10

詰まった球の慣性モーメントを御存知なら別解があります。

こっちの方がずっと面倒という説もありますが、高校生の時に数学のよく出来る同級生にこのやり方を教わってかなり感動したので・・・。

外半径R、内半径rの球殻の慣性モーメントは、外半径の球の慣性モーメントから内半径の球の慣性モーメントを引くことによって、I=(2/5)M(R^5-r^5)/(R^3-r^3)となります。これはr/R=xと置くと、I=(2/5)MR^2(1-x^5)/(1-x^3)変形できます。これのx→1の極限をとれば、求めたい厚さ0の球殻の慣性モーメントになります。(1-x^5)/(1-x^3)はx→1で0/0の不定形ですが、ロピタルの定理を使うと5/3となることがわかります。というわけで、結局I=(2/3)MR^2。

同じ重さ、半径の中空の球と詰まった球では滑らない限り、中空の方がゆっくり転がりますよ。慣性モーメントがでかいわけですから、回転の運動エネルギーがより多く必要になるので。
    • good
    • 5

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


おすすめ情報