『ボヘミアン・ラプソディ』はなぜ人々を魅了したのか >>

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

基本的な考え方だけ説明します。


「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)
    • good
    • 5
この回答へのお礼

ありがとうございます。
がんばってみます。

お礼日時:2007/12/31 20:20

(1),(2),(3)の順番に考えていけば、OKかと思います。


(1)はガウスの法則使えば、電界の強さが計算できるかと思います。
(2)は(1)で算出できた電界を外殻から内殻まで積分すれば出そうに思います。
(3)は(2)で求めた電位Vと元の電荷QからQ=CVの関係を使って算出できるかと思います。
    • good
    • 3

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q大学の電磁気学についての問題です!!

大学の電磁気学についての問題です!!



半径a<bの同心導体球殻A,Bがあります。
Aに電荷+q、Bに電荷-qを与えました。

(1)A,B間の任意の点r(ベクトル)(a<r<b)における電場E(r)を求めなさい。
(2)同心球をコンデンサーとみるときの電気容量Cを求めなさい。


どうかおねがいします!!!!!同心導体球殻の特徴もできれば教えてください!

Aベストアンサー

ガウスの法則使って計算するのが楽でしょう。
1. 同心の球面を考える。
電場が球対称なので、球面上の電界の大きさは同じで、球面に対して垂直方向。
q=∫εEds=(4πr^2)εEからE=q/(4πr^2ε)。

2. Vab=∫-Edr=∫-q/(4πr^2ε)dr=q/(4πεr)|b->a =q/(4πε)(1/a-1/b)
C=q/Vab=(4πε)/(1/a-1/b)=4πεab/(b-a)。
という具合になりそうに思います。

Q電場のエネルギー密度と静電エネルギー

電磁気学の質問です。

電場のエネルギー密度 1/2 ε_0 E^2 を空間の全体積で積分すると
静電エネルギーになるという式変形は追えるのですが、
この2つの具体的な関係がよくイメージ出来なくて困っています。
静電エネルギーというと、コンデンサーにたまるエネルギーで、
導体を帯電する時の仕事と理解してるのですが、
何かこれだけでは足りない気がしていて…。

もし、よろしければ、どなたかアドバイスいただけませんか?
よろしくお願いします。

Aベストアンサー

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味を考えてみると、電荷Qの導体自身が静電エネルギーUを持っている物だと考えていたのに、その周りの空間(場)にエネルギーが蓄えられている、という見方も出来るのです。
もっと言えば、電荷eがあるとその周りの空間にある種の歪み(電場)が生じ、その歪みがエネルギーを蓄えていると考えられるわけです。

同じように磁場についても、電荷が動けばその周りの空間に歪み(磁場)が生じ、場自身がエネルギー密度1/2*μ_0 B^2 を持つことが分かります。
磁場や電場による力についても色々式をいじくっていくとマックスウェルの応力と呼ばれる空間(場)に力が働くという表示も得られたりします。

結局何が言いたいのかというと、電磁気学というのは場という考え方に基づいて話を展開することができ、その立場の元では静電エネルギーというのは場そのものがエネルギーを蓄えていると考えられると言うことです。

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味...続きを読む

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)

Q無限に長い円筒の側面上に電荷が一様な面密度

半径Rの無限に長い円筒の側面上に電荷が一様な面密度σで分布しているとき、ガウスの法則を用いて生じた電場を求めよ。

以下参考書の解説
 閉曲面Sとして、電荷の分布する円筒と同軸の半径r、長さLの円筒面を選ぶ。Sについての電場Eの面積分はE2πrL
 Sの内部に含まれる電荷はr<Rのとき0、r >Rのときσ2πRL
 よって、ガウスの法則より、E=0(r<R)、σR/εr(r >R)

なぜ、Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?
なぜ、E=σR/εr(r >R)なんですか?

詳しい解説お願いします。

Aベストアンサー

>Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?

問題の定義どおりです。

面密度 x 円筒の表面積 = σ x 2πRL

>なぜ、E=σR/εr(r >R)なんですか?

ガウスの法則から

電場=電荷量/(ε局面Sの側面積) = σ x 2πRL/(ε2πrL)=σR/(εr)

Q導体表面の電界

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度をσとし、σのつくる電界をガウスの法則で求めるが、解答をみると
E=σ/2ε0

(某問題3)無限に広い導体平面の上に一様な面密度σの電荷が分布している。。。。。。以下省略。

で、解答中、σによる電界は平面に垂直でその大きさは、
E=σ/ε0

(某問題4)液体の誘電体があり、その液中に導体の板が二枚がある距離をもって向き合っている。そして、導体間に電位差Vがある。2導体の引き合う力を求めよ。

で、+電極の真電荷密度をσ、それに接する液体面の分極電荷密度
をσpとすると、-電極にはそれぞれ、-σ、-σpの電荷が有る。+電極の力を求めるには-電極の-σと-σpがσに及ぼす力を考えればよい。-σと-σpだけがつくる電界は
E=(σ+σp)/2ε0

自分なりに推測したところ、

某問題1と3は、表面に垂直な微小円筒を仮想閉曲面とし、ガウスの法則を適用する。
導体内部では電界はゼロで、導体の外部に出ている閉曲面の部分を考えればよく、また、側面はE・dS=0。
従って、積分が残るのは上面だけであり、E=σ/ε0

某問題2と4では、微小円筒の仮想閉曲面が平面を貫いており、上の1と3における積分が上面と下面になり、
E=σ/2ε0

と考えました。

私の質問は、
・某問題1~4のEの求め方は私の推測で正しいでしょうか?
次に、私の推測が正しいかどうかわかりませんが、
・なぜ、2と4の問題では、下面の積分も残るのでしょうか?
 問題の条件文はそのまま上に書きましたが、私が何度読んでも、4つとも同じ条件に見えてしまいます。
この見極め方を教えて頂きたいです。

よろしくお願いします。

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度...続きを読む

Aベストアンサー

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/ε
  ___________
|_-__-__-__-__|  電荷の面密度は-σとする。

     E=0

(1)の電場の強さはガウスの法則で求まります。
それはあなたが推測された通りです。

(2)では、+の平板が作る電場と、-の平板が作る電場とを
重ね合わせることによって、そこに生じている電場を求めます。
2つの平板の間では、2つの電場は向きが同じなので、
強めあう重なりになります。
2つの平板の外側では、2つの電場は向きが逆なので、
弱めあう重なりになります。

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+...続きを読む

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

価格.com 格安SIM 料金比較