
http://oshiete1.goo.ne.jp/qa3031710.html
ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。
僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。
そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。
この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?
電磁気学の理解に乏しいので詳しく教えていただきたいです。
No.1ベストアンサー
- 回答日時:
「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.
わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.
上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.
さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.
図で表すなら
│
┌───┴───┐
│ │
│ │
外球殻内側─┴─ ─┴─外球殻外側
内球─┬─ ─┬─無限遠
│ │
│ │
└───┬───┘
│
と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 物理学 静電遮蔽された導体球殻中心の電位 6 2023/05/26 23:49
- 物理学 同心球導体についての問題です。 (1)内球に電荷Q1、外球に電荷Q2としたとき、電界の大きさと距離r 4 2023/05/31 18:57
- 物理学 誘電率ε_0の真空中に、2つの円筒極板AとBがあり、 A の外半径はa, Bの内半径はbである (a 4 2023/03/10 20:28
- 物理学 電磁気学の問題です。 真空中に置かれた半径 a[m ]の導体球の周りを 、 内半径b[m ] 、 外 2 2023/08/10 19:02
- 物理学 半径a,bの同心球の間に誘電率ε, 電気伝導率σの物質をつめ, 内球に電荷Qを与えるとき, 物質内に 3 2023/03/23 11:00
- 物理学 電磁気学の問題について教えてほしいです。 Z方向の一様な外部電界 E0中に半径aの導体球(電位V0) 2 2023/04/09 13:26
- 物理学 無限に長い導体円筒の問題です。 (1)この導体円筒の単位あたりの静電容量を求めよ。 (2)内外の導体 1 2023/05/30 23:49
- 物理学 このような問題でいくつか質問があります。 ①導体球が帯電している=導体球内に電荷がある (帯電してい 2 2023/04/12 14:48
- 物理学 物理の問題 1 2022/12/20 13:33
- 工学 面積Sの円形導体板を間隔dで平行に配置したコンデンサの問題てす。 (1)静電容量C0をSもdとε0を 1 2023/05/31 19:07
このQ&Aを見た人はこんなQ&Aも見ています
-
ショボ短歌会
ひどい短歌を詠んでください。
-
泣きながら食べたご飯の思い出
泣きながら食べたご飯の思い出を教えてください。
-
限定しりとり
文字数6文字以上の単語でしりとりしましょう
-
単二電池
あなたの家に何本ありますか?
-
人生で一番お金がなかったとき
人生で一番お金がなかったときって、どんなときでしたか?
-
同心球導体球の接地について
物理学
-
図のように球導体と球導体を包む殻の導体があり、この外側の導体に電荷Qを与えます。 中の球導体を接地す
物理学
-
電磁気学の2つの同心導体球の電荷分布について
高校
-
-
4
接地した同心導体球の問題について・・・
物理学
-
5
内球(r=a) と外球殻(内半径b 外半径c) を中心をそろえた、同心導体球 で、内球を設置します。
物理学
-
6
電磁気学のガウスの法則の問題について教えてください
工学
-
7
同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量
物理学
-
8
接地
物理学
-
9
ガウスの定理
その他(教育・科学・学問)
-
10
コンデンサの並列条件
物理学
-
11
電気磁気の問題です。 半径 a[m]の導体球を内半径 b[m]、外半径 c[m]の導体球殻で包んだ同
工学
-
12
静電遮蔽された導体球殻中心の電位
物理学
-
13
水素原子の陽子と電子の間に働くクーロン力の求め方を教えてください。水素原子の陽子と電子の平均距離は0
化学
-
14
3つの同心導体球を1つのコンデンサと見なした際の合成静電容量はどのように求めればよいですか? 中心の
物理学
-
15
半径aの球内に電荷Qが一様に体積分布している時のEとVを求める問題なのですが、 なぜ写真の2つの青線
工学
-
16
物理の問題です
物理学
-
17
CuS+HNO3=??
化学
-
18
加速度と角加速度の関係について
物理学
-
19
不定積分∫log(1+x)/x dxが分かりません
数学
-
20
電界Eと電圧Vの関係を積分形であらわすとどうなりますか?V=∫Edxで
その他(教育・科学・学問)
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
p+、p++、n-、n--の意味は?
-
キムタオルの白と茶って何が違...
-
電子殻の距離について
-
なぜ放射線は水の中を通れない...
-
電子はどこから来て、どこへ行く?
-
スピン量子数
-
質量数、物質量、分子量、原子量
-
導体で同心の外球、内球があり...
-
高校1年生です。化学で原子量を...
-
金属について
-
普通名詞 一定の形のある人や...
-
酢酸ウラニルの管理方法
-
wt%からat%に変換する方法
-
γ(ガンマ)作用はなぜ起きる?...
-
なぜヘリウムは電子の数か2個な...
-
ニホニウムについて
-
原子核崩壊(β崩壊)について
-
金(Au)を人工的に作れない理...
-
熱伝導率と電気伝導率の関連性...
-
配位結合と共有結合が区別でき...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
p+、p++、n-、n--の意味は?
-
Excelで三角グラフを作成したい...
-
有機化学の質問です。 C4H8Br2...
-
炭酸カルシウムCaCO3のCaの酸...
-
セミナー化学の問題です(2)が空...
-
化学のアボガドロ定数の公式の2...
-
キムタオルの白と茶って何が違...
-
導体で同心の外球、内球があり...
-
化学基礎 酸化還元反応について
-
金(Au)を人工的に作れない理...
-
質量数、物質量、分子量、原子量
-
電子はどこから来て、どこへ行く?
-
高校1年生です。化学で原子量を...
-
電磁気学の2つの同心導体球の電...
-
なぜ放射線は水の中を通れない...
-
アミノ酸の構造と正味の電荷に...
-
構成と組成の意味の違い
-
電子と電源
-
電磁気学のガウスの法則の問題...
-
化学
おすすめ情報