人気マンガがだれでも無料♪電子コミック読み放題!!

この前化学の実験で、ヘキサアンミンコバルト((3))イオンの合成をおこなったのですが、その操作として、塩化コバルト六水和物に塩化アンモニウムを加えて水を加えた溶液に、活性炭と濃アンモニア水も加えました。これをよくかき混ぜた後、過酸化水素水を滴下して、滴下終了後15分間かき混ぜて、溶けずに析出した[Co(NH3)6]Cl3の結晶と活性炭を吸引ろ過しました。ろ取したものをビーカーに移し、これに希塩酸を加えて加熱し、[Co(NH3)6]Cl3の結晶を溶かしました。溶液が熱いうちに吸引ろ過して不溶の活性炭を除き、最後にろ液に濃塩酸を加えて、氷水中で冷却すると、[Co(NH3)6]Cl3の結晶が析出しました。
ここで、この実験における活性炭、過酸化水素水、濃塩酸の役割がよく分かりません。長い文章になって申し訳ありませんが、どうか回答お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

 私も良くは解りませんが,下に示す過去質問の回答から考えると,次の様に考えられます。



  活性炭: 触媒
  過酸化水素水: 酸化剤
  濃塩酸: 錯体の溶解度を下げて結晶化を促進

 詳しくは下の過去質問の回答を参考に,ご自分で「無機化学」や「錯体化学」の教科書や参考書を調べて下さい。

 ◎ QNo.403766 Co(III)の溶液
   http://odn.okweb.ne.jp/kotaeru.php3?q=403766

 ◎ QNo.86614 ヘキサアンミンコバルト((3))塩化物の合成について
   http://odn.okweb.ne.jp/kotaeru.php3?q=86614

 ◎ QNo.87363 活性炭とコバルトアンミン錯体
   http://odn.okweb.ne.jp/kotaeru.php3?q=87363
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q活性炭とコバルトアンミン錯体

>系内で一部の反応で、活性炭の存在により
>[CoCl(NH3)5](2+)
>⇒遷移状態としてCo(3+)(?)←活性炭による酸化
>⇒NH3の脱離
>⇒[Co(III)Cl2(NH3)4](+)

>あるいは
>⇒NH3の脱離←木炭(?)
>⇒遷移状態としてCo(3+)(?)←活性炭による酸化

いずれの機構にしても、途中で形式酸化数Co(IV)を
考えると言うことでしょうか?

Aベストアンサー

rei00 です。

> 当然「QNo.86614 ヘキサアンミンコバルト((3))塩化物の合成について」関連なのですが、・・・・・

 あ,いや新質問にすることに関してはこれで良いと思います。というよりも,私がinorganicchemist さんに教えを請うた時点で新質問にすべきであったとチョット反省しております(新質問にしようかとも思ったのですが,こういった展開になるとは考えなかったもので・・・)。

 私が言いたかったのは,お礼で書かれている様に「しかし、質問文が適切でなかった」という事です。これでは,私と MiJun さんぐらいしか内容がわからないですから。やっぱり,他の方にもわかる表現の方が良かったのでは,というだけです。あまり気になさらないで下さい。


さて,本論が遅くなりましたが,MiJun さんの回答を拝見して,再度先の「コットン・ウィルキンソン 無機化学 下」(培風館)を読み直してみました。すると,p.782 に問題の反応に関する次の様な記述がありました。以下,「コットン・ウィルキンソン 無機化学 下」(培風館),p.782 からです。

 Co(II) の化学の重要な特徴は,各種の錯形成配位子(とくに配位原子が窒素である場合)の存在下分子状酸素によってきわめてたやすく酸化されることである。この場合最終的には通常の Co(III) 錯体へ酸化される(とくに活性炭を触媒として存在させるとこの酸化がうまくいく)のであるが,酸素の作用では,はじめ Co(III) の複核ペルオキソ錯体ができるのであって,この中間体が不安定で通常の Co(III) 錯体となるのである。第一段階には O2 が配位して(p.331 を見よ)Co(IV) 錯体をつくることが含まれており,これがさらに Co(II) と反応して Co(III) の複核錯体を生ずる。すなわち CoCl2 溶液を空気酸化すると,アンモニアの存在では褐色の反磁性錯体 [(NH3)5Co(O2)Co(NH3)5](4+) を生ずる。・・・・・


いかがでしょうか。残念ながら私の知識では,これを解説することは元より,これが正しいかどうかの判断もつきません。よければ,一度現物を御覧になって解説して下さい。お願い致します。

rei00 です。

> 当然「QNo.86614 ヘキサアンミンコバルト((3))塩化物の合成について」関連なのですが、・・・・・

 あ,いや新質問にすることに関してはこれで良いと思います。というよりも,私がinorganicchemist さんに教えを請うた時点で新質問にすべきであったとチョット反省しております(新質問にしようかとも思ったのですが,こういった展開になるとは考えなかったもので・・・)。

 私が言いたかったのは,お礼で書かれている様に「しかし、質問文が適切でなかった」という事です。これでは...続きを読む

Qコバルトの錯体について質問です。

塩化コバルト(2)とエチレンジアミンなどから、trans-[CoCl2(en)2]Cl・HCl・2H2Oを合成し、それから[CoCl2(en)2]Clを合成するという実験をしました。

塩化コバルト(2)を水に溶かし、エチレンジアミンを加え、これに空気を2時間激しく通して、コバルトを2価から3価へ酸化をする、という操作があったのですが、初めからなぜ3価のコバルトを使わなかったのでしょうか?
3価のコバルトはあまり安定ではないと聞いたことがあるような気がしたので、錯体を作れば安定に存在できるのかな、とか考えていましたが、
ここで調べていたら、2価だと置換活性で、3価は置換不活性ということが書いてありました。
ということは、3価では反応しにくいから、2価を使ったということでしょうか。
なぜ2価と3価では、活性不活性があるのでしょう?また、安定不安定はなぜそうなるのでしょうか。

あと、今回の実験では、trans-[CoCl2(en)2]Clが初めにできて、それからcis-[CoCl2(en)2]Clを作りました。
これは、立体障害などからtransのほうが安定なので、先にtransができたのではと考えましたが、
原因はそれだけでしょうか?また、cisからtransを作ることはできるのでしょうか?。

塩化コバルト(2)とエチレンジアミンなどから、trans-[CoCl2(en)2]Cl・HCl・2H2Oを合成し、それから[CoCl2(en)2]Clを合成するという実験をしました。

塩化コバルト(2)を水に溶かし、エチレンジアミンを加え、これに空気を2時間激しく通して、コバルトを2価から3価へ酸化をする、という操作があったのですが、初めからなぜ3価のコバルトを使わなかったのでしょうか?
3価のコバルトはあまり安定ではないと聞いたことがあるような気がしたので、錯体を作れば安定に存在できるのかな、とか考えていましたが、
こ...続きを読む

Aベストアンサー

>なぜ2価と3価では、活性不活性があるのでしょう?

d電子の数の違いについて、
Co((3))はd電子が6つなので、強配位子場のとき配位子場安定化エネルギーが最も大きいため、配位子をよく引き付ける。
(詳しいことは配位子場理論をどうぞ)

また3価なのでより配位子の電子を引き付けやすい。

よって配位子の交換がおこりにくいと思われます。

もちろん分光化学系列によると、H2O<enなので、配位子がH2O(水に溶かしたとき)よりenが配位するほうが安定なので、十分時間がたてば、enが配位しているでしょう。

cis、transはやはり対称性の高いtransのほうが安定だと思いますね。
なのでcisからtransに変えることは可能だと思います。

私のわかる範囲で回答してみました。
参考になれば幸いです。

QCo(III)の溶液

簡単な質問で申し訳ないですが・・
Coは2価のほうが安定ですが
2価の塩(例えば硝酸や炭酸塩)に
過酸化水素水を加えただけで
容易に3価になるでしょうか?
3価の溶液を得るにはいい方法はないでしょうか?
よろしくお願いします

Aベストアンサー

 専門家(ん?一般人?)の inorganicchemist さんの回答がありますが,せっかく本を開きましたので回答しておきます。

 「コットン・ウィルキンソン 無機化学 下」(培風館)には次の様な事が書かれています。

◎ 錯形成剤の含まれていない水溶液中では,Co(III) への酸化はきわめて起こりにくい

  [Co(H2O)6](3+) + e(-) → [Co(H2O)6](2+) E^0 = 1.84 V

◎ Co(III) と安定な錯体をつくる NH3 のような錯形成剤が存在すると,3価コバルトの安定性は大きくなる

  [Co(NH3)6](3+) + e(-) → [Co(NH3)6](2+) E^0 = 0.1 V

◎ 3価コバルトは酸性溶媒中よりも塩基性溶媒中でより安定である

  CoO(OH) (s) + H2O + e(-) → Co(OH)2 (s) + OH(-) E^0 = 0.17 V

◎ 錯形成陰イオンを含まない酸性溶液中での酸化電位はきわめて高く,かなりな濃度の Co(III) は水を急速に酸化する

 結論として,お書きの方法では3価の溶液は得られないと思います。

 ご参考まで。

 専門家(ん?一般人?)の inorganicchemist さんの回答がありますが,せっかく本を開きましたので回答しておきます。

 「コットン・ウィルキンソン 無機化学 下」(培風館)には次の様な事が書かれています。

◎ 錯形成剤の含まれていない水溶液中では,Co(III) への酸化はきわめて起こりにくい

  [Co(H2O)6](3+) + e(-) → [Co(H2O)6](2+) E^0 = 1.84 V

◎ Co(III) と安定な錯体をつくる NH3 のような錯形成剤が存在すると,3価コバルトの安定性は大きくなる

  [Co(NH3)6](3+) + e(-) ...続きを読む

Qコバルト錯塩の生成で。

ペンタアンミンクロロコバルト(3)塩化物をアンモニア水と水とシュウ酸とシュウ酸アンモニウムと反応させてペンタアンミンアクアコバルト(3)シュウ酸塩を作ったのですが、化学反応式が作れません(*_*)わかる方いましたら教えてくださいm(__)m

Aベストアンサー

ペンタアンミンクロロコバルトとペンタアンミンアクアコバルトの化学式は分かっていますか?
分かれば、錯塩のどの部分が反応前後で変わったが分かって、問題解決のヒントになる気がするのですが。

Qコバルト(III)錯体

実験でコバルト(III)錯体を4種合成しました。
そのあと、電子吸収スペクトルを測定したのですが、課題で
分光化学系列について、なぜ、配位子により第I吸収帯がシフトするのか、化学結合に基づいて説明せよ、というのが出てるのですが
さっぱり分かりません。

ちなみに、合成した錯体は
トリス(オキサラト)コバルト(III)酸カリウム・三水和物 K3[Co(ox)3]・3H2O

エチレンジアミンテトラアセタトコバルト(III)酸カリウム・二水和物
K[Co(edta)]・2H2O

ペンタアンミンクロロコバルト(III)塩化物
CoCl(NH3)5Cl2

ヘキサアンミンコバルト(III)塩化物
[Co(NH3)6]Cl3

の4種です。
よろしくお願いいたします。

Aベストアンサー

「化学結合に基づいて」とありますが、たぶん配位結合のことだと思います。
分光化学系列とは同一中心金属に、さまざまな配位子を同様な構造をとるように配位させた時に見られる可視部近くの比較的弱い吸収帯を波長順に並べた配位子の序列のこと。と習った気がします。
吸収極大のエネルギーの大きさに関係あるんじゃないかなぁと私は思いました。
本で調べてみたら、吸収極大の大きさの順は中心金属によらず
I^- < Br^- < Cl^- < F^- < OH^- < C2O4^2-~H2O < NCS^- < ピリジン~NH3 < エチレンジアミン < ピピリジル < 1,10-フェナントロリン < NO2^- < CN^-
とありました。
勘違いな回答かもしれませんが、参考になったらうれしいです。

QCu2+、Co3+のできる理由とその電子配置について

Cu2+、Co3+のできる理由とその電子配置について

 いつも大変お世話になっております。
CuとCuの電子配置は、
 Cu:[Ar].3d10.4s1
 Co:[Ar].3d7.4s2
となっており、そのことからイオンになるとCu1+、Co2+となるのは
納得できるのですが、Cu2+、Co3+にもなれるのはどのような考え方から
なのでしょうか。
 よろしくお願いします。

Aベストアンサー

> イオンになるとCu1+、Co2+となるのは納得できる

それで納得するのは よくないんじゃないかな、と私は思います。

同じ考え方でクロムとスカンジウムについて考えてみると、
CrとScの電子配置は、
 Cr:[Ar]3d5 4s1
 Sc:[Ar]3d1 4s2
なので、イオンになるとCr1+、Sc2+となりそうな気がします。ですけど、これらのイオンは化学的に極めて不安定で、Cr1+やSc2+は化合物や水溶液の中にはありません。

> Cu2+、Co3+にもなれるのはどのような考え方からなのでしょうか。

ごめんなさい。私には分かりません。以下はヒントになりそうなことを。

Co3+イオンの安定性については、結晶場理論(または配位子場理論)で説明することが一応できます。結晶場理論(または配位子場理論)から、遷移金属イオンの周りに陰イオンまたは配位子が6個あるとき、遷移金属元素のd軌道が2組に分裂することが知られています。エネルギーが低いほうのd軌道(これをdε軌道またはt2g軌道と呼びます)には最大6個の電子を、高いほうの軌道(これをdγ軌道またはeg軌道と呼びます)には最大4個の電子を収容することができます。ですので、d電子が6個あるCo3+イオンはdε軌道が閉殻になるので安定である、ということができます。

しかし、同じ考え方で電子が6個あるFe2+イオンについて考えてみると、話はそんなに単純ではないことが分かります。ヘキサアクア鉄(II)イオン[Fe(H2O)6]2+のような、ふつうのFe2+イオンでは、dε軌道に6個の電子を収容した閉殻電子配置ではなく、dε軌道に4個、dγ軌道に2個の電子が入っている電子配置になります。一方、ヘキサシアノ鉄(II)酸イオン[Fe(CN)6]4-では、dε軌道に6個、dγ軌道に0個の閉殻電子配置になります。また、コバルトでも、ヘキサフルオロコバルト(III)酸イオン[CoF6]3-のような(若干特殊な)例では、dε軌道に4個、dγ軌道に2個の電子配置になります。

なぜ、このような面倒な話になるかというと、dε軌道とdγ軌道のエネルギー差が3d遷移金属ではそれほど大きくなく、金属イオンの電荷や陰イオンや配位子の種類によって変わるからです。それでも、ふつうに見られるCo3+イオンでは、dε軌道とdγ軌道のエネルギー差が他の3d遷移金属イオンと比べると大きく、閉殻電子配置をとることが多いので、Co3+イオンの安定性については、結晶場理論(または配位子場理論)で説明されることが多いです。

Cu2+イオンの安定性を電子配置から説明するのは、簡単ではないと思います。というのは、同じ電子配置を持つ同族元素の銀ではAg2+イオンはまれにしか見出されず、金ではAu2+イオンは極めてまれにしか見出されないからです。何の答えにもなっていませんが、いくつかの要因の絡み合った結果として、Cu2+イオンがありふれたイオンになっているのでしょう。

> イオンになるとCu1+、Co2+となるのは納得できる

それで納得するのは よくないんじゃないかな、と私は思います。

同じ考え方でクロムとスカンジウムについて考えてみると、
CrとScの電子配置は、
 Cr:[Ar]3d5 4s1
 Sc:[Ar]3d1 4s2
なので、イオンになるとCr1+、Sc2+となりそうな気がします。ですけど、これらのイオンは化学的に極めて不安定で、Cr1+やSc2+は化合物や水溶液の中にはありません。

> Cu2+、Co3+にもなれるのはどのような考え方からなのでしょうか。

ごめんなさい。私には分かりません。以...続きを読む

Q金属錯体の特有の色について

二価の銅イオンを含む水溶液は、青色を呈するのに、どうして一価の銅イオンを含む水溶液は無色なのですか?ナトリウムイオン、カリウムイオンも水溶液中では無色である理由も気になります。イオンの電子配置と何か関係があるのでしょうか?

Aベストアンサー

honeyBさんがどの程度の基礎知識をお持ちか分かりませんが,とりあえず非常に簡単なところから述べさせていただきます。

地面に落ちているボールを拾い上げると,ボールは位置エネルギーを受け取ってエネルギーの高い状態,つまり落ちる危険性のある状態になります。分子に光を当てると,分子は光のエネルギーを受け取ってエネルギーの高い状態になります。この分子の初めの状態を「基底状態」,エネルギーの高い状態を「励起状態」と言います。

この両者には決定的な違いがありまして,ボールの位置エネルギーは連続的な値を取れますが,つまりボールは好きな高さまで連続的に持ち上げることができますが,分子の励起エネルギーは飛び飛びの値しかとれません。よって,分子が吸収できる光のエネルギーも,飛び飛びの値しかとれません。分子が吸収する光のエネルギーと光の振動数との関係は,E=hνという式によって表されますので,分子が吸収する光の振動数も飛び飛びの値をとります。このことが,分子が色を持つ根本的な原因になっています。

分子が色を持つには,分子が可視光に相当する振動数の光を吸収する必要がありますが,これに相当する励起エネルギーは分子内の電子遷移に対応します。そして,電子遷移には大雑把にπ-π*遷移,n-π*遷移,d-d遷移,CT遷移などの種類がありますので,分子の色を説明するにはこれらの電子遷移の有無,および分子軌道の対称性(対称性によって電子遷移の許容・禁制が決まる)を考えれば良いということになります。

錯体の色については,配位子が単純である場合はd-d遷移,CT遷移のみを考えれば説明が付きます。この中で,d-d遷移は禁制遷移,CT遷移は許容遷移であるため,モル吸光係数が1000 cm2/mmol程度の錯体はd-d遷移による呈色のみであると考えることができます。

ここでご質問の件ですが,Cu2+は最外殻の3d軌道に電子が9個入ったd9錯体ですので,八面体構造の場合は3d軌道内(より具体的には3d_xy→3d_z2)でd-d遷移が起こります。そして,このd-d遷移が原因でCu2+の錯体はブルーに呈色します。一方,Cu+はd10錯体ですので,完全に閉殻構造となりd-d遷移は起こりません。単純な配位子では他の電子遷移も起こりませんので,Cu+の錯体は大抵無色になります。K+もNa+も同様に閉殻構造ですので,やはり無色です。

最後に。電子軌道と不連続なエネルギーについては物理化学(量子力学)の成書を,錯体の色に関する理論(配位子場理論,ヤーンテラー効果)については無機化学(錯体化学もしくは配位化学)の成書をご覧になれば,より一層理解が深まると思います。

honeyBさんがどの程度の基礎知識をお持ちか分かりませんが,とりあえず非常に簡単なところから述べさせていただきます。

地面に落ちているボールを拾い上げると,ボールは位置エネルギーを受け取ってエネルギーの高い状態,つまり落ちる危険性のある状態になります。分子に光を当てると,分子は光のエネルギーを受け取ってエネルギーの高い状態になります。この分子の初めの状態を「基底状態」,エネルギーの高い状態を「励起状態」と言います。

この両者には決定的な違いがありまして,ボールの位置エネル...続きを読む

Qコバルトの反応で

定性分析の実験において、Co(2+)とOH(-)の反応ではCo(OH)2の淡紅色沈殿が生じるという予想だったのですが青色の沈殿が生じました。
これは、試料溶液が硝酸コバルトだったのでCo(NO3)2+NaOH→Co(OH)NO3+NaNO3という反応が起こったためだと思い、
レポートにもそう書いて提出したのですが、「なぜ青色になるか説明すること」というコメントつきで返されてしまいました。
Co(OH)NO3は青色沈殿ではないということでしょうか?
いろいろと調べてみてもCo(OH)NO3という化学式さえ見つからず困っています。
そもそも青色になったのはCo(NO3)2+NaOH→Co(OH)NO3+NaNO3という反応が起こったためなのでしょうか?
どなたかわかる方、回答よろしくお願いします。

Aベストアンサー

手元にあった実験書を開いてみますと、Co(OH)2の色は、「桃色から青」と記されていました。また、海外のサイトによりますと、light blueと記されていました。
どうやら、ちょっとした条件の違いによって、桃から青のあいだで変わるようです。
しかしながら、この変化の原因は未だに不明です。
ただ、コバルトの性質として、例えば[Co(SCN)4]2-が青色であることなどを考えれば、本来はピンクのものが、ちょっとした不純物によって、青色になりやすいと言えるかも知れません。

いささか非科学的な話もあり、原因究明には至りませんでしたが、参考になれば幸いです。

参考URL:http://www.teachmetuition.co.uk/Chemistry/Transition_Metals/transition_elements.htm

Qベンズアルデヒドの酸化の反応機構を教えてください!!

ベンズアルデヒドの酸化の反応機構を教えてください!!
ベンズアルデヒドを酸素で酸化して、安息香酸ができる反応の反応機構を教えてください。または、反応機構が載っているサイトを教えてください。お願いします。

Aベストアンサー

#1です。体力を取り戻したので、(笑) 少し詳しく書きます
酸素による「自動酸化」は連鎖反応で、最初に開始剤(不特定のラジカル、もしくはラジカル発生試剤)を要します。
「自動酸化」
Ph-CHO + R・ → Ph-C(=O)・ + RH
Ph-C(=O)・ + O2 → Ph-C(=O)-O-O・
Ph-C(=O)-O-O・ + Ph-CHO → Ph-CO-O-O-H +Ph-C(=O)・
過安息香酸ができるとともにベンズアルデヒドラジカルができ、二番目と三番目の反応が交互に起きて過安息香酸がたまります。
過安息香酸ができてしまうのでは困るので、(笑)ベンズアルデヒドと過安息香酸が反応し付加物ができた後これが二分子の安息香酸に分かれます。この転位反応が結構遅いのでメンドイです。
Ph-CO-O-O-H + Ph-CHO → Ph-CO-O-O-CH(OH)-Ph →転位→ 2Ph-CO-O-H
になります。
触媒など色々必要なのですが、混乱するだけなので省きます。

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング