【先着1,000名様!】1,000円分をプレゼント!

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

A 回答 (1件)

「与えた」に余りこだわりすぎると


「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.
    • good
    • 5

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q接地した同心導体球の問題について・・・

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

更に問題では、内側の導体と外側の導体の電位差を求めよ。と続きます。
外球が接地しているという条件より、外側の導体の電位は0[V]となることは分かります。
しかし、内球の電位を考えた場合、
通常、グランドに繋がっていない場合は
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+((Q1+Q2)/(4πεc))
となると思うのですが、
r>cにおける電位は0[V]だと先ほど求めたため、
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+0
とも考えられる気がします。

グランドに繋ぐことで、((Q1+Q2)/(4πεc))の値は消えてしまうのでしょうか。
この問題は、以前の試験問題だったようで、回答がないので、はっきりとした答えが分かりません。

どなたか可能でしたらお返事お願いします。

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]に...続きを読む

Aベストアンサー

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのはずです.
つまり,問題の前半の答は計算するまでもなく明らかでした.

多少詳しく見てみます.
まず,導体内では電場はゼロですから
0<r<a と b<r<c では E=0 です.
内側の球に与えた電荷 Q1 は導体表面に均等に分布します.
したがって,a<r<b では Gauss の法則からわかりますように,
電場は E=Q/4πεr^2 です.
Q1 の電荷が中心にあるように見えます.

次に,外側の球殻に与えた電荷は導体表面に分布するのですが,
球殻内側と無限遠に分かれて分布します.
外側球殻を接地していますからこうなります.
もし設置していなければ,内側表面(r=b)と外側表面(r=c)に分かれて分布します.
さて,半径 r が b<r<c であるような球面に Gauss の法則を適用してみます.
導体内では電場がゼロですから当然電場の面積分もゼロです.
これが半径 r の球内の電荷総量の 1/ε に等しいというのが Gauss の法則ですから,
半径 r の球内の電荷総量はゼロです.
内側の球に Q1 だけ電荷が分布しているのですから,
球殻の内側表面(r=b)には -Q1 だけの電荷が分布していないといけません.
球殻には Q2 の電荷を与えたのですから,
Q2+Q1 だけどこかにないといけないわけで,
Q2+Q1 は接地した線を伝わって無限遠まで逃げていきます.
つまり,球殻外側表面(r=c)には電荷はありません.

今度は r>c の球面に Gauss の定理を適用します.
内部の電荷総量はゼロですから,電場もゼロです.
導体球殻と無限遠とは同電位ですから(接地!),
その間で電場が存在しないのは当然です.
これは最初に述べました.

まとめますと,
0<r<a では E=0
a<r<b では E=Q/4πεr^2
b<r    E=0
です.

----------------------

もし,外側の球殻を接地していなければ以下のようになります.
今度は導体球殻外側表面(r=c)に Q2+Q1 の電荷が均等に分布します
(つまり,接地していないので,これ以上遠くに逃げられない).
r>c の球面に Gauss の定理を適用したときに,
内部の電荷総量は Q2 になりますから
0<r<a では E=0
a<r<b では E=Q1/4πεr^2
b<r<c   E=0
c<r  では E=Q2/4πεr^2

----------------------

電場がわかれば電位の計算は大丈夫ですよね.
それから,電荷 Q1=5*10^-10 などに単位が抜けていますね.

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのは...続きを読む

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

QRC並列回路(直流)の微分方程式が分かりません

RC並列回路(直流回路)の過渡応答の微分方程式がうまく導くことができません。
初期状態で,電荷Qがコンデンサに蓄えられています。
回路動作のイメージは出来ているのですが・・・。

どなたか,助けていただけませんか?
もうノートが真っ黒です。よろしくお願いします。

Aベストアンサー

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしました.

ただし,
v = E u(t). …(4)

(1),(2)よりi_Rを消去して,
i_C = (1 + r/R)i - v/R.

これを(3)に代入して,
v = r i + (1/C)∫(-∞,t]{(1 + r/R)i - v/R}dt
dv/dt = r di/dt + (1 + r/R)i/C - v/(C R)

∴di/dt + (1 + r/R)i/(C r) = {dv/dt + v/(C R)}/r = (E/r){δ(t) + u(t)/(C R)}.

ただし,初期条件は E = r i(0) より
i(0) = E/r.

これがこの回路の微分方程式です.

----
この微分方程式はラグランジュの定数変化法で解くことができて,初期条件を考慮した解は,t > 0 において

i
= (E/r)exp{-(1 + r/R)t/(C r)}
+ E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

したがって,

i_R = E/(R + r) [1 - exp{-(1 + r/R)t/(C r)}],

i_C = (E/r)exp{-(1 + r/R)t/(C r)}.

コンデンサの両端の電圧は

v_C = R i_R
= E/(1 + r/R) [1 - exp{-(1 + r/R)t/(C r)}]

以上の結果においてr→+0の極限を取ると,その振る舞いはANo.3の解と一致します.

とりあえず,ANo.5のaの回路を扱っておきます.
例によってスイッチSを閉じた瞬間を時刻t = 0とし,
電源から流出する電流をi,
抵抗を流れる電流をi_R,
コンデンサを流れる電流をi_Cとします.

キルヒホフの第1法則より
i = i_R + i_C. …(1)

第2法則より
v = r i + R i_R, …(2)
v = r i + (1/C)∫(-∞,t] i_C dt. …(3)

※私個人的には気持ち悪いのですが,式が煩雑になるのを避けるため,定積分の上端と積分変数に同じ文字を使いました.

※あと,デルタ関数とかの処理をきっちりするため,積分下端を-∞にしまし...続きを読む

Q誘電体に働く力がわかりません

「面積S、横幅Lの導体平板が2枚、間隔dを空けて存在する並行平板コンデンサがある。このコンデンサに電圧Vを印加しながら、コンデンサの右端からxのところまで、誘電率εの誘電体で満たした。真空中の誘電率をε0として、誘電体に働く力Fの方向を求めよ。」
という問題がわかりません。

コンデンサに電荷Qを充電して、電源を外し、誘電体を入れる場合には、コンデンサの静電エネルギーW=(Q^2)/2Cであることから
  F = -∂W/∂x > 0
よって誘電体に働く力の向きはxの増加する方向(コンデンサに引き込まれる方向)だと思いました。

ですが、電圧Vを印加したままの状態だと、コンデンサの静電エネルギーW=C(V^2)/2なので
  W = {εSx/(d×L)+ε0S(L-x)/(d×L)}(V^2)/2
  F = -∂W/∂x
= SV^2/(2d×L)(ε0-ε)<0
よって誘電体に働く力の向きはxの減少する方向(コンデンサから追いやられる向き)だと思いました。
これであっているのでしょうか?

Aベストアンサー

考え方が間違っている。

コンデンサの静電エネルギーの変化と誘電体の運動エネルギーの和は保存しません。
保存量でないためF=-∂W/∂xとはできません。

電源がつながっている状態では電源自体が仕事をするのでその影響を考えないといけないのです。
電源がした仕事=コンデンサの静電エネルギーの増加+誘電体の運動エネルギーの増加
になります。
誘電体が中に入った時、コンデンサの静電エネルギーは増大しますが電源の行った仕事はそれ以上に大きいため誘電体の運動エネルギーは増大します。
(電荷量の増加⊿Qとすると電源の行った仕事はV⊿Qとなります。コンデンサの静電エネルギーの増大は(1/2)V⊿Qですので誘電体に(1/2)V⊿Qの仕事がなされるのです。)

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q大学の電磁気学についての問題です!!

大学の電磁気学についての問題です!!



半径a<bの同心導体球殻A,Bがあります。
Aに電荷+q、Bに電荷-qを与えました。

(1)A,B間の任意の点r(ベクトル)(a<r<b)における電場E(r)を求めなさい。
(2)同心球をコンデンサーとみるときの電気容量Cを求めなさい。


どうかおねがいします!!!!!同心導体球殻の特徴もできれば教えてください!

Aベストアンサー

ガウスの法則使って計算するのが楽でしょう。
1. 同心の球面を考える。
電場が球対称なので、球面上の電界の大きさは同じで、球面に対して垂直方向。
q=∫εEds=(4πr^2)εEからE=q/(4πr^2ε)。

2. Vab=∫-Edr=∫-q/(4πr^2ε)dr=q/(4πεr)|b->a =q/(4πε)(1/a-1/b)
C=q/Vab=(4πε)/(1/a-1/b)=4πεab/(b-a)。
という具合になりそうに思います。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング