人に聞けない痔の悩み、これでスッキリ >>

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

A 回答 (1件)

ベクトルを表すために


r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.
    • good
    • 1
この回答へのお礼

非常に分かりやすい説明をありがとうございます。
おかげさまで理解できました。
特に、2の底面に対してどういった理論で0になるのかを丁寧に書いていただいたことに非常に感謝しています。
ありがとうございました!

お礼日時:2011/08/07 09:02

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Q球面上の面積分について

球面上の面積分について
A(→)=(xy、y、yz)を
半径1の円球面上で、Z軸からθ1とθ2の間の帯状の面で面積分したいのですが全くわかりません…
教えてください

Aベストアンサー

ガウスの定理を使うのよ。
∫A・ndS = ∫(∇・A)dV
∇・A = ∂A_x/∂x + ∂A_y/∂y + ∂A_z/dz = y + 1 + y = 2y+1

∫A・ndS = ∫(∇・A)dV = ∫∫∫(2y+1)dxdydz

ここで、極座標を使う。
 y = rsinθsinφ
 dxdydz = r^2sinθdrdθdφ
 0≦r≦1, θ1≦θ≦θ2, 0≦φ≦2π

∫∫∫(2y+1)dxdydz = ∫∫∫(2rsinθsinφ+1)r^2sinθdrdθdφ

積分範囲は 0≦r≦1, θ1≦θ≦θ2, 0≦φ≦2π。
この積分をやれば、答えは出ます。
タダの累次積分だから、後はできるでしょ。

頑張って計算してください。
積分はdr,dφ,dθの順番でやった方が楽ですよ、きっと。

Q面積分の問題です。

放物面S:z=x^2+y^2、(x^2+y^2<=4)について、
(1)この曲面の表面積
(2)この曲面上でのφ=zの面積分
(3)この曲面上でのベクトル場A=yi-xj+z^2kの面積分
の求め方を教えてください。

Aベストアンサー

(1)
S:{(x,y,z)|z=x^2+y^2≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S1=∬[S] dS
=∬D √{1+(z_x)^2+(z_y)^2} dxdy
=∬D √{1+4x^2+4y^2} dxdy
x=rcosθ, y=rsinθとおくと
z=r^2≦4
0≦r≦2,0≦θ≦2π
D → E:{(r,θ)|0≦r≦2, 0≦θ≦2π}
√{1+4x^2+4y^2} dxdy=√(1+4r^2) rdrdθ
であるから
S1=∬[E} r√(1+4r^2) drdθ
=∫[θ:0→2π] dθ∫[r:0→2] r√(1+4r^2) dr
=2π[(2/3)(1/8)(1+4r^2)^(3/2)][r:0→2]
={17(√17)-1}π/6 ←(答え)

(2)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S2=∬[S] φdS
=∬[D} z√{1+(z_x)^2+(z_y)^2}dxdy
=∬[D] (x^2+y^2)√(1+4x^2+4y^2)dxdy

x=rcosθ, y=rsinθとおけば
(x^2+y^2)√(1+4x^2+4y^2)dxdy
=(r^2)√(1+4r^2) rdrdθ=(r^3)√(1+4r^2)drdθ
D → E:{(r,θ)|0≦r≦2,0≦θ≦2π}
S2=∬[E] (r^3)√(1+4r^2)drdθ
=∫[θ:0→2π] dθ∫[r:0→2](r^3)√(1+4r^2)dr
=2π∫[r:0→2](r^3)√(1+4r^2)dr
=2π[(1/120)(6r^2-1)(1+4r^2)^(3/2)][r:0→2]
=(391(√17)+1)π/60 ←(答え)

(3)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y

S3=∬[S] A↑・n↑dS
=∬[S] (y,-x,z^2)・(-2x,-2y,1)/√(1+4x^2+4y^2) dS
=∬[D] (-2xy+2xy+x^2+y^2)dxdy
=∬[D] (x^2+y^2)dxdy

x=rcosθ, y=rsinθとおくと
D → E:{r,θ)|0≦r≦2,0≦θ≦2π}
S3=∬[E] (r^2) rdrdθ
=∫[θ:0→2π] dθ∫[r:0→2] (r^3)dr
=2π[(1/4)r^4][r:0→2]
=8π ←(答え)

(1)
S:{(x,y,z)|z=x^2+y^2≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S1=∬[S] dS
=∬D √{1+(z_x)^2+(z_y)^2} dxdy
=∬D √{1+4x^2+4y^2} dxdy
x=rcosθ, y=rsinθとおくと
z=r^2≦4
0≦r≦2,0≦θ≦2π
D → E:{(r,θ)|0≦r≦2, 0≦θ≦2π}
√{1+4x^2+4y^2} dxdy=√(1+4r^2) rdrdθ
であるから
S1=∬[E} r√(1+4r^2) drdθ
=∫[θ:0→2π] dθ∫[r:0→2] r√(1+4r^2) dr
=2π[(2/3)(1/8)(1+4r^2)^(3/2)][r:0→2]
={17(√17)-1}π/6 ←(答え)

(2)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S2=∬[S] φdS
=...続きを読む

Q線積分、面積分とは何?

現在、大学でベクトル解析を学んでいます。
そこで、線積分や面積分といったものがでてきたのですが、計算方法はわかったのですが、何を求めているのかが
今ひとつ分かりません。
 線積分とは、定点から、線分のある点に向かう
ベクトルとそのある点における値を掛けたものを線分上の
全ての点において足し合わせたもの、面積分とはある点における面素とその点における法線を掛けたものを面上の全ての点において足し合わせたもの
 と解釈しているのですが、やはり、どこの値がでてきているのかが今ひとつ分かりません。また、これを求めることによりどんな利点があるのでしょうか?力学や電磁気等を理解するには必須みたいですが・・・。
 よろしければ、回答お願いいたします。

Aベストアンサー

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。

一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

*******************************************
以上のようだそうです.

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例...続きを読む

Q単位法線ベクトルの求め方

曲面z=x^2+y^2の点(1,0,1)における単位法線ベクトルを求めよ

という問題で、答えが分からず困っています。


1.

φ=x^2+y^2-z=0
gradφ=(2x,2y,-1)
(1,0,1)での勾配は、(1,0,1)を代入してgradφ=(2,0,-1)
この単位ベクトルを求めて、(2,0,-1)*5^(-1/2)


2.

求める値は
{(∂φ/∂x)×(∂φ/∂y)}/{l(∂φ/∂x)×(∂φ/∂y)l}に(1,0,1)を代入すればよいので
(-2x,-2y,1)/(4x^2+4y^2+1)^(-1/2)に(1,0,1)を代入すればよい
よって、(-2,0,1)*5^(-1/2)

どちらの答えがあっているのでしょうか?

出てきた値の符号が違うので........

Aベストアンサー

ある曲面の単位法線ベクトルがuだとすると、-uもまた単位法線ベクトルになります。
両方とも単位法線ベクトルです。

Q面積分の計算

授業でやった面積分の問題でわからないところがあったので、できれば教えてもらいたいです。

1.曲面z=2-x^2-y^2 のx≧0、y≧0、z≧0にある部分をSとする。
面積分 ∬(x^2+y^2)dS を解け。
という問題なのですが、例題を参考にして
r=(x、y、2-x^2-y^2) 、 dS=|∂r/∂x × ∂r/∂y|dxdy
として計算してみたのですが、どうもうまくいきません。
計算が違うのか、他の解き方なのかわかりませんが、どなたか分かる方がいたら教えて下さい。

それと、もう1つ
2.X=(xz、xyz^2、3z)とする。Sを円錐z^2=x^2+y^2と平面z=2に囲まれた領域を全表面とする。この領域の外部をSの正の向きとしたとき、次を計算せよ。
∬ X・n dS (nは外向き単位法線ベクトル)
という問題で、これはよくわかりません。
nをどうやって考えたらいいのかがよくわからないので、そこから先に進めません。どなたか分かる方がいたら、ヒントでもよいので教えてもらえないでしょうか?

長々とすいませんでした。よろしくお願いします。

授業でやった面積分の問題でわからないところがあったので、できれば教えてもらいたいです。

1.曲面z=2-x^2-y^2 のx≧0、y≧0、z≧0にある部分をSとする。
面積分 ∬(x^2+y^2)dS を解け。
という問題なのですが、例題を参考にして
r=(x、y、2-x^2-y^2) 、 dS=|∂r/∂x × ∂r/∂y|dxdy
として計算してみたのですが、どうもうまくいきません。
計算が違うのか、他の解き方なのかわかりませんが、どなたか分かる方がいたら教えて下さい。

それと、もう1つ
2.X=(xz、xyz^2、3z)とする。Sを円錐z^2=...続きを読む

Aベストアンサー

#2です。
A#2の回答でお書きした積分はSで囲まれた部分の体積です。
質問者さんの質問の面積積分ではありませんので下記の面積積分
の解答に差し替えてください。
訂正のお願いとお詫びをさせて頂きます。

1.
∂r/∂x × ∂r/∂y
=(1,0,-2x)×(0,1,-2y)
=|i_j_k; 1_0_-2x; 0_1_-2y|
=(2x,2y,1)
|∂r/∂x × ∂r/∂y|=√{4(x^2)+4(y^2)+1}
I=∬_S*{x^2+y^2}dS
=∬_Ω*(x^2+y^2)√{4(x^2)+4(y^2)+1}dxdy
Ω:2-x^2-y^2≧0,x≧0,y≧0
x=r*cosθ, y=r:sinθで置換
I=∫[θ:0,π/2]∫[r:0,√2]*(r^2)[{4(r^2)+1}^(1/2)]*rdrdθ
=(π/2)∫[r:0,√2]*(r^3)[{4(r^2)+1}^(1/2)]*dr
=(π/2)(1/120)[{6(r^2)-1}{4(r^2)+1}^(3/2)]|[r:0,√2]
=149π/120

これは#3様の計算結果と同じになります(合っていることを確認する
結果になりました)。

#2です。
A#2の回答でお書きした積分はSで囲まれた部分の体積です。
質問者さんの質問の面積積分ではありませんので下記の面積積分
の解答に差し替えてください。
訂正のお願いとお詫びをさせて頂きます。

1.
∂r/∂x × ∂r/∂y
=(1,0,-2x)×(0,1,-2y)
=|i_j_k; 1_0_-2x; 0_1_-2y|
=(2x,2y,1)
|∂r/∂x × ∂r/∂y|=√{4(x^2)+4(y^2)+1}
I=∬_S*{x^2+y^2}dS
=∬_Ω*(x^2+y^2)√{4(x^2)+4(y^2)+1}dxdy
Ω:2-x^2-y^2≧0,x≧0,y≧0
x=r*cosθ, y=r:sinθで置換
I=∫[θ:0,π/2]∫[r:0,√2]*(r^2)[{4(r^2)+1}^(1/2)]*rdrdθ
=(...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qベクトル解析ガウスの発散定理の問題がわからないです

円錐面z^2=x^2+y^2と平面z=1で囲まれる閉曲面をSとする。ベクトル場F=(xz,xyz^2,yz)のS上の面積分をガウスの発散定理を用いて求めよ。
という問題です、詳しく教えていただければ、と思います。(汗

Aベストアンサー

#1への「補足」に対して

ごめんなさい。π/4 が正解です。

I = ∫F・dS = ∫∇・F dV
∇・F = ∂(x z)/∂x + ∂(x y z^2)/∂y + ∂(y z)/∂z
   = z + x z^2 + y
I = ∫∫∫(z + x z^2 + y) dx dy dz
x z^2 と y はそれぞれ x と y について奇関数なので、いまの場合、それらの積分は 0。

z を円柱座標で積分すると、
I =∫∫∫ z dx dy dz
 = ∫∫∫ z r dr dθ dz
 = ∫(∫(∫dθ) r dr) z dz
 = ∫(∫(θ[0→2π]) r dr) z dz
 = ∫(∫2πr dr) z dz
 = π∫([r^2][0→z]) z dz
 = π∫z^2 z dz
 = π∫z^3 dz
 = π[z^4 / 4][0→1]
 = π/4。

あるいは
I =∫∫∫ z dx dy dz
= ∫z (∫∫dx dy) dz
= ∫z (πz^2) dz
= π∫z^3 dz
= π[z^4 / 4][0→1]
= π/4。

#1への「補足」に対して

ごめんなさい。π/4 が正解です。

I = ∫F・dS = ∫∇・F dV
∇・F = ∂(x z)/∂x + ∂(x y z^2)/∂y + ∂(y z)/∂z
   = z + x z^2 + y
I = ∫∫∫(z + x z^2 + y) dx dy dz
x z^2 と y はそれぞれ x と y について奇関数なので、いまの場合、それらの積分は 0。

z を円柱座標で積分すると、
I =∫∫∫ z dx dy dz
 = ∫∫∫ z r dr dθ dz
 = ∫(∫(∫dθ) r dr) z dz
 = ∫(∫(θ[0→2π]) r dr) z dz
 = ∫(∫2πr dr) z dz
 = π∫([r^2][0→z]) z dz
 = π∫z^2 z dz
 = π∫z^3 dz
 = π[z^4 / 4][0→1]
 = π...続きを読む

Q球の体積を求めるときの積分範囲について

球の体積を求める時の積分範囲が
r方向が0からr
θ方向が0からπ
φ方向が0から2π
になる理由が分かりません。

なぜθ方向も球なんだから2πまで積分しないのかわかりません。
それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

Aベストアンサー

No.1です。

>なぜθ方向も球なんだから2πまで積分しないのかわかりません。

体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

>それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

体積Vと積分の式の関係を正しく理解して体積を積分の式に直していれば
θとφ方向の積分範囲が逆になっても何ら問題ありません。
体積を正しく積分の式に直せていないところに問題があるのです。
機械的に体積要素を(r^2)sinθdrdθdφと思い込んでしまっていることが
間違いの原因です。
体積V(必ず正)を求める時は、体積要素dV=dxdydzも正でなければ
ダメです。
dV=dxdydz=(r^2)sinθdrdθdφ>0
がπ≦θ≦2πで成り立たないことに気がつかないといけないですね。
体積Vが微小な正の積分要素dVを体積Vの領域全体にわたって足し合わせたものです。負の積分要素が現れるのは体積Vが正しく積分の式で表せていないことを意味します。これは最も基本的な体積積分の概念です。
積分範囲を機械的に置き換えることは問題なくても、積分要素dVが負にならないということに反するような積分の式はおかしいと考えないといけないですね。つまり、積分要素dV(すなわち被積分関数)が正しく表せていないことに気がつかないといけないですね。

以下を熟読してあなたの疑問を解決してください。

球座標(3次元での極座標の1つ)で計算しているのだからANo1で述べた通り、
定石通り計算すれば
V=∫∫∫{x^2+y^2+z^2≦R^2(R≧0)} dxdydz
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
となります。
参考URLをご覧になって下さい。
Jはヤコビ行列、|J|は正確にがヤコビ行列の行列式det(J)の絶対値になります。

ヤコビアン|J|は球座標では
det(J)=(r^2)sinθなので
|J|=(r^2)|sinθ| ...(※)
となります。
積分範囲0≦θ≦πではsinθ≧0なので |J|=(r^2)sinθ
となります。
V=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} (r^2)sinθdrdθdφ...(☆)

この積分を積分範囲{0≦r≦R,0≦θ≦2π,0≦φ≦π}で積分しても構いませんがこの時は(※)に戻って
V=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦2π} |J|drdθdφ
0≦θ≦2πではsinθが正負の値をとるので
|sinθ|=sinθ(0≦θ≦πの時)、|sinθ|=-sinθ(0≦θ≦2π)
となるので
V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2)|sinθ|drdθdφ...(◆)
で球の体積を計算しないといけないということです。

体積要素dVで言えば
dV=dxdydz=|J|drdθdφ=(r^2)|sinθ|drdθdφ
となります。これを球の体積の場合、球の内部を重複しない積分範囲で積分すれば良いというわけです。
積分範囲は
(A){0≦r≦R,0≦θ≦π,0≦φ≦2π}
(B){0≦r≦R,0≦θ≦2π,0≦φ≦π}
(A),(B)いずれでも構いませんが
被積分関数のsinθに絶対値がついていることに
注意しないといけません。

(※)のヤコビアン|J|=(r^2)|sinθ|は
0≦θ≦πでは|J|=r^2sinθ
π≦θ≦2πでは|J|=-r^2sinθ
となるので
(A)の場合の体積Vの積分は(☆)の式になりますが、
(B)の場合の体積の積分は(◆)の式になって|sinθ|の絶対値を外せば
V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2)|sinθ|drdθdφ
=∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦π} (r^2)sinθdrdθdφ
+∫∫∫{0≦r≦R,π≦θ≦2π,0≦φ≦π} (r^2)(-sinθ)drdθdφ
=2∫∫∫{0≦r≦R,0≦θ≦π,0≦φ≦π} (r^2)sinθdrdθdφ

この積分計算を質問者さんは,|sinθ|の変わりにsinθとしてしまったことにより

V=∫∫∫{0≦r≦R,0≦θ≦2π,0≦φ≦π} (r^2) sinθdrdθdφ
=0
という球の体積がゼロ?となると誤った結果が出るのです。

質問の疑問はとけましたか?

これは以下の面積Sの積分計算に類似した誤りに通ずるものがあります。
重要なので繰り返しますが
体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

y=sinθとx軸(θ軸)で囲まれた範囲[0~2π}面積Sを求めるとき、機械的に積分すれば S=∫[0→2π} sinθdθ=0
というおかしな結果が出ます。面積はy=sinθのグラフを描けば、有るので、
S=∫[0→π} sinθdθ+∫[π→2π} (0-sinθ)dθ
=∫[0→2π} |sinθ|dθ=2∫[0→π} sinθdθ=4
のようにsinθの絶対値をとれば正しい面積Sが求まります。

参考URL:http://wasan.hatenablog.com/entry/20110319/1300568061

No.1です。

>なぜθ方向も球なんだから2πまで積分しないのかわかりません。

体積Vと積分の式の関係を正しく理解して体積を積分の式に直さないといけないですね。

>それと、θとφ方向の積分範囲が逆になってしまってはだめなんですか?

体積Vと積分の式の関係を正しく理解して体積を積分の式に直していれば
θとφ方向の積分範囲が逆になっても何ら問題ありません。
体積を正しく積分の式に直せていないところに問題があるのです。
機械的に体積要素を(r^2)sinθdrdθdφと思い込んでしまっていることが
間違いの原因...続きを読む


人気Q&Aランキング