人に聞けない痔の悩み、これでスッキリ >>

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

A 回答 (2件)

未消化のgrad fを使わなくても以下のように出来ます。


いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14
    • good
    • 3

かなり厳しいことを書いているかもしれません。


あなたの為を思って書いています。
他の質問を見るのではなく,
テキストに下記のような表現で記載があるはずです。
近頃では、各大学の研究室やWikipediaでも数学に触れる機会があります。
御自分で探して,単なる一時凌ぎではなく、本当に数学を理解して下さい。
本来,学問は楽しいものですので,自己解決出来る力を養って下さい。
数学の本質は,出題された問題を解くというものではありません。
応援していますので頑張って下さい。説教くさくてすみません。
++++++++++++++++++++++++++++++++++++++++++++++++++++
【定理】 スカラー場φ(x, y, z) の勾配であるgrad(φ) は,
等位面φ(x, y, z) = c(cは任意の定数) の法線方向を与える。
つまり,等位面φ(x, y, z) = c の単位法線ベクトルnは,

 n=∇φ/|∇φ|(特に指定が無い場合は,n=±∇φ/|∇φ|)

で与えられる。
----------------------------------------------------
上記を踏まえて,この質問では,φをfという文字で表していますので,
以下,それに置き換えて表現します。

>曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.
>という問題です.

>他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
>とするのはわかったのですがgradfがわからないです。。。

気になったのですが,曲面 4x^2*y+z^3 = 4ですか?
それとも,曲面 4x^(2y)+z^3 = 4ですか?

全く関数が異なりますが,何れにしても解法は同じですので,
恐らく,
曲面 4x^(2y)+z^3 = 4
だろうということで,以下,記載します。

gradfという演算子はありませんので,
宿題若しくはテストでそのような表現を使用すると問題は解けても,
紛らわしく不正解になる可能性があります。注意してください。
上述の通り,正式な表現は,grad(f)となります。(本当は,grad{f( x , y , z )})


以下,定理の通り,単位法線ベクトルをn,n=∇f/|∇f|とする.単位法線ベクトルnを求める.

∇f=grad(f)より,先ず,点P(1, -1, 2)における法線ベクトルを求めます.

∇f=(∂/∂x , ∂/∂y , ∂/∂z)f
  =(∂f/∂x , ∂f/∂y , ∂f/∂z)
  ={ (2y)*4x^(2y-1) , 4x^(2y)*log(4x) , 3z^2}
  =4{ -2 , 2log2 , 3 } (∵f = 4x^2y+z^3-4)

次に,単位ベクトルを求める為,grad(f)の大きさを求めます.
|∇f|=4*{ (-2)^2 + (2log2)^2 + 3^2}^(1/2)

曲面 4x^(2y) + z^3 = 4における,
点P(1, -1, 2)における単位法線ベクトルは1つだけではない為,
求めた逆ベクトルも含める.

∴n=±{(13 + 8log2)^(1/2)}*( -2 , 2log2 , 3 )

敢えて,検算はしていません。
    • good
    • 3

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単位法線ベクトルの求め方

曲面z=x^2+y^2の点(1,0,1)における単位法線ベクトルを求めよ

という問題で、答えが分からず困っています。


1.

φ=x^2+y^2-z=0
gradφ=(2x,2y,-1)
(1,0,1)での勾配は、(1,0,1)を代入してgradφ=(2,0,-1)
この単位ベクトルを求めて、(2,0,-1)*5^(-1/2)


2.

求める値は
{(∂φ/∂x)×(∂φ/∂y)}/{l(∂φ/∂x)×(∂φ/∂y)l}に(1,0,1)を代入すればよいので
(-2x,-2y,1)/(4x^2+4y^2+1)^(-1/2)に(1,0,1)を代入すればよい
よって、(-2,0,1)*5^(-1/2)

どちらの答えがあっているのでしょうか?

出てきた値の符号が違うので........

Aベストアンサー

ある曲面の単位法線ベクトルがuだとすると、-uもまた単位法線ベクトルになります。
両方とも単位法線ベクトルです。

Q単位法線ベクトル

たとえばある曲面Sにおける単位法線ベクトルが[1,1,1]であるときその単位ベクトルと反対向きのベクトル[-1,-1,-1]も単位法線ベクトルといえると考えてもよいのでしょうか?

以下は問題で
x^2+y^2-z-1=0であらわされた曲面Sの点(1,1,1)における単位法線ベクトルを求めよというものです。
r'x=i + 2xk
r'y=j + 2yk
としこれらのベクトル積を求めました。
大きさは3となったのですが、ベクトル積は歪対象則から[-2,-2,1]と[2,2,-1]ができてしまうと思います。
しかし答えとしては[2/3,2/3,-1/3]のみしか載っていません。
もしただひとつ決まるものならばどのような考えでそのひとつに決まるのでしょうか?
よろしくお願いします。

Aベストアンサー

単位法線ベクトルは絶対値が1ですから、絶対値で割ってやる必要がありますね。
(2,2,-1)の絶対値は 3 ですから 3で割って
(1/3)(2,2,-1)=
となるわけです。

数学では単位法線ベクトルが、向きが逆の
-(2/3,2/3,-1)=(-2/3,-2/3,1)
のどちらでも正解に入るでしょう。おそらく、より正の成分が多い方の
(2/3,2/3,-1)で代表させるのでしょう。

物理学や電磁気学では力や電気力線や磁界などの向きが問題になりますので、座標系やベクトル積を右手系で扱うとか、左手系で扱うとかに決めて、曲面にも正側、負側を決めてやります。
たとえばベクトル積の場合だと
A×Bのベクトルの向きを右手系で定義すると、AをBに重ねるように回転したとき、その回転面に対して垂直な方向に向けた右ネジを同じ向きに回転させた時、右ネジがすすむ方向をベクトル積の正の方向とする。

また別の例として、閉曲面の周囲を閉曲面を左に見て1周するとき、その面に立てた右ネジを同じ方向に回転させ右ネジが進む側の方の曲面を閉曲面の正の側とし、その正の側の方に向いた大きさ1の法線ベクトルを単位法線ベクトルと定義して不確定要素を排除しているかと思います。

右手系、左手系、その間の相互の変換については参考URLをご覧下さい。

参考URL
http://ja.wikipedia.org/wiki/%E5%8F%B3%E6%89%8B%E7%B3%BB
http://www12.plala.or.jp/ksp/vectoranalysis/AxialAndPolar/
http://wiki.livedoor.jp/atushiinliv/d/%BA%B8%BC%EA%BA%C2%C9%B8%B7%CF%A4%C8%B1%A6%BC%EA%BA%C2%C9%B8%B7%CF%B4%D6%A4%CE%CA%D1%B4%B9

参考URL:http://www.core.kochi-tech.ac.jp/m_inoue/work/pdf/2002/a11/20.pdf

単位法線ベクトルは絶対値が1ですから、絶対値で割ってやる必要がありますね。
(2,2,-1)の絶対値は 3 ですから 3で割って
(1/3)(2,2,-1)=
となるわけです。

数学では単位法線ベクトルが、向きが逆の
-(2/3,2/3,-1)=(-2/3,-2/3,1)
のどちらでも正解に入るでしょう。おそらく、より正の成分が多い方の
(2/3,2/3,-1)で代表させるのでしょう。

物理学や電磁気学では力や電気力線や磁界などの向きが問題になりますので、座標系やベクトル積を右手系で扱うとか、左手系で扱うとかに決めて、曲面にも正側、負...続きを読む

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Q線積分、面積分とは何?

現在、大学でベクトル解析を学んでいます。
そこで、線積分や面積分といったものがでてきたのですが、計算方法はわかったのですが、何を求めているのかが
今ひとつ分かりません。
 線積分とは、定点から、線分のある点に向かう
ベクトルとそのある点における値を掛けたものを線分上の
全ての点において足し合わせたもの、面積分とはある点における面素とその点における法線を掛けたものを面上の全ての点において足し合わせたもの
 と解釈しているのですが、やはり、どこの値がでてきているのかが今ひとつ分かりません。また、これを求めることによりどんな利点があるのでしょうか?力学や電磁気等を理解するには必須みたいですが・・・。
 よろしければ、回答お願いいたします。

Aベストアンサー

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例えば、「太さが一定でなく、とある関数であらわされているような紐の重さを計算する」というのが一つの例になるでしょう。

一方、面積分とは同じように書くならば、「何がしかの曲面を細かく分けて調べ、その量をすべて足し合わせることによって面全体の性質を調べること」になります。

例としては、日本全体の人口密度分布が分かっているときに、日本全体の人口を求めること、や、地価の分布が何らかの関数であらわされているとき、その地方の土地の値段の総量を求めるような計算が面積分です。

*******************************************
以上のようだそうです.

積分といえば単純に体積を求めたり、面積を求めたりするもの、と考えている人が少なからずいると思いますが、それだけではありません。高校の最後の方で学んでいるはずですが、道のりや速さなどありとあらゆるものを計算することもできます。

一言で言えば、積分とは「(無限小に)細かくわけて足し算すること。」に他なりません。

こういった視点からみてみますと、線積分とは「なにがしかの線を細かく分けて調べ、それをすべて足し合わせることによってその線全体の性質を調べること」を意味します。

例...続きを読む

Q線形代数の3次元空間での法線ベクトル、平面の方程式

線形代数の、3次元空間での法線ベクトル、平面の方程式の問題を教えて下さい
この問題が分かりません
3 次元空間において次の問いに答えなさい.
(1) 原点を含む法線ベクトル
1
  2
-1
の平面S の方程式を求めなさい
(2) 点(4, 5, 2) から平面S に垂線Lを下ろす. 直線Lの方程式とLとS の交点を求めなさい
(3) 直線Lを含み点(0, 0, 0) も含む平面の方程式を求めなさい
という問題です。皆さんお願いします
教えて下さい

Aベストアンサー

(1) 原点を含む法線ベクトル(1,2,-1) の平面S の方程式を求めなさい
>ベクトルを↑で表し、法線ベクトルを↑N(1,2,-1)とする。
S上の任意の点を(x,y,z)とすると、原点(0,0,0)がS上の点なので、
↑(x,y,z)は↑N(1,2,-1)と直交する。
よって内積を↑・↑で表すと↑(x,y,z)・↑N(1,2,-1)=x+2y-z=0
x+2y-z=0・・・答
(2) 点(4, 5, 2) から平面S に垂線Lを下ろす. 直線Lの方程式とLとS の交点を求めなさい
>直線L上の任意の点を(x,y,z)とするとuを実数として
↑(4, 5, 2)-↑(x,y,z)=u↑N=u↑(1,2,-1)だから
4-x=u、5-y=2u→(5-y)/2=u、2-z=-u→z-2=u
よって直線の方程式は4-x=(5-y)/2=z-2・・・答
x+2y-z=0に4-x=(5-y)/2→y=2x-3、4-x=z-2→z=6-xを代入
x+2(2x-3)-(6-x)=6x-12=0、x=2、y=2*2-3=1、z=6-2=4
よってLとS の交点は(2,1,4)・・・答
(3) 直線Lを含み点(0, 0, 0) も含む平面の方程式を求めなさい
>3点(0,0,0)、(4,5,2)、(2,1,4)を含む平面上の任意の
点を(x,y,z)とすると、u,vを実数として
↑(x,y,z)=u↑(4,5,2)+v↑(2,1,4)
要素を比較してx=4u+2v(ア)、y=5u+v(イ)、z=2u+4v(ウ)
(ア)(イ)からu,vをx,yで表すとu=(2y-x)/6、v=(5x-4y)/6
これらを(ウ)に代入して
z=2u+4v=2{(2y-x)/6}+4{(5x-4y)/6}=(3x-2y)
よって、3x-2y-z=0・・・答

(1) 原点を含む法線ベクトル(1,2,-1) の平面S の方程式を求めなさい
>ベクトルを↑で表し、法線ベクトルを↑N(1,2,-1)とする。
S上の任意の点を(x,y,z)とすると、原点(0,0,0)がS上の点なので、
↑(x,y,z)は↑N(1,2,-1)と直交する。
よって内積を↑・↑で表すと↑(x,y,z)・↑N(1,2,-1)=x+2y-z=0
x+2y-z=0・・・答
(2) 点(4, 5, 2) から平面S に垂線Lを下ろす. 直線Lの方程式とLとS の交点を求めなさい
>直線L上の任意の点を(x,y,z)とするとuを実数として
↑(4, 5, 2)-↑(x,y,z)=u↑N=u↑(1,2,-1)だから
4-x=u、5-y=2u→(5-y)/...続きを読む

Q何故偏微分が法線の成分に

 関数f(x,y,z)=0という曲面があって曲面上のある点Pの接平面を求めるとき
 Fx*X'+Fy*Y'+Fz*Z=0という式が出ます。
この式の意味するところはFx Fy FzがP点での法線ベクトルのx y z成分になるということらしいのですがよく理解出来ません。何故偏微分が法線ベクトルの成分になるのでしょうか?教えてください!

Aベストアンサー

>>斜面の勾配が最も急な向きは、(Fx, Fy) で与えられることは感覚的に納得できるでしょう。
>ここがよく分かりません。Fx=x-y平面でx方向のみ移動させた時のZの増加率になりますよね。何故これが法線ベクトルのx方向になるかが分かりません。

ここで言ったのは、(Fx,Fy)というベクトルが、"最大の勾配の方向"を与えるということです。
つまり、斜面にボールを置いたとき、-(Fx,Fy)の方向に転がるということです。
そして、"最大の勾配の方向"は等高線と垂直なはずだから、(Fx,Fy)は等高線の法線と同じ方向だと分かる。
ということなのですが、これで質問の回答になっているでしょうか…。

以下、(Fx,Fy)が"最大の勾配の方向"を与える理由を書きます。

F(x,y)を全微分すれば、
  dF = Fxdx + Fydy = (Fx,Fy)・(dx,dy)
よって,(dx,dy)が(Fx,Fy)と同一方向のとき dF は最大,すなわち (Fx,Fy) は"最大の勾配の方向"を与える.

イメージとしては次のような感じです。
F(x,y) = ax (x方向に傾いた板)では、(Fx,Fy) = (a,0) でx方向を向くベクトル。
F(x,y) = by (y方向に傾いた板)では、(Fx,Fy) = (0,b) でy方向を向くベクトル。
F(x,y) = ax+by (x方向とy方向の傾きを持つ板)では、(Fx,Fy) = (a,b) で斜面の方向を向くベクトル。(ノートか何かを傾けて確認してみるといいかもしれません)
微分可能な曲面は局所的には平面とみなせるから、(Fx,Fy) はその点での"最大の勾配の方向"を与えます。

ところで、ベクトル解析では(Fx,Fy)というベクトルを、grad F とか、∇F と書くのですが、ご存知ないでしょうか…。
もしご存知ないなら、私の説明は分かりにくいかもしれません。
参考までにwikipediaのURLの載せておきます。
http://ja.wikipedia.org/wiki/%E5%8B%BE%E9%85%8D

参考URL:http://ja.wikipedia.org/wiki/%E5%8B%BE%E9%85%8D

>>斜面の勾配が最も急な向きは、(Fx, Fy) で与えられることは感覚的に納得できるでしょう。
>ここがよく分かりません。Fx=x-y平面でx方向のみ移動させた時のZの増加率になりますよね。何故これが法線ベクトルのx方向になるかが分かりません。

ここで言ったのは、(Fx,Fy)というベクトルが、"最大の勾配の方向"を与えるということです。
つまり、斜面にボールを置いたとき、-(Fx,Fy)の方向に転がるということです。
そして、"最大の勾配の方向"は等高線と垂直なはずだから、(Fx,Fy)は等高線の法線と同じ方...続きを読む

Q曲面の単位法線ベクトル

直交座標{O: i,j,k}
曲面 z=-xyの点P(1,2,-2)における単位法線ベクトルnを求めよ

と言う問題があるのですが、これは

f = (x,y,z) = xy + z
gradf = yi + xj + k
(gradf)p = 2i + j - k

n = (gradf)p / |(gradf)p| = (2i + j -k)/√6

と算出したのですが、この考え方でよろしいでしょうか?

Aベストアンサー

>f = (x,y,z) = xy + z
f(x,y,z)=xy+zのことね。
>gradf = yi + xj + k
>(gradf)p = 2i + j - k
ここでkの符号が変わるのはなぜだろう?
後はいいと思う。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング