色彩を教える人になるための講座「色彩講師養成講座」の魅力とは>>

a=(1,2,1)にもb=(2、-1,1)にも直交する単位ベクトル
を求めたいのですが、求めたい単位ベクトルをxと置いて
a・x=0、b・x=0という風にしてみたのですがうまくいきません。
計算過程を含めご教授していただける方がいらっしゃいましたら宜しくお願いします。

gooドクター

A 回答 (3件)

>> 求めたい単位ベクトルをxと置いて.。



x=(x,y,z)
 単位ベクトは、大きさが1だから、
|x|=1 と書けます。
   これを成分で表現して、
√[(x^2)+(y^2)+(z^2)]=1
    両辺を2乗して、
[(x^2)+(y^2)+(z^2)]=1・・・(A)

また、
>> a・x=0、 b・x=0

   是も成分で表現して、
(1,2,1)・(x,y,z)=0,  (2,-1,1)・(x,y,z)=0
x+2y+z=0・・・(B), 2x-y+z=0 ・・・(C)     

   (C)-(B)で、
   x=3y   これを、(B)に代入して、
   z=-5y

   x,z が y で表されているのを確認して、
   2式を(A)に入れて、

 9(y^2)+(y^2)+25(y^2)=1
           35(y^2)=1
     y=(1/√35), (-1/√35)

    即ち求めたい単位ベクトルは、
  (3/√35, 1/√35, -5/√35) 、
  (-3/√35, -1/√35, 5/√35) 。
    • good
    • 10
この回答へのお礼

ご解説ありがとうございます。
非常に理解しやすく助かります。
ありがとうございました。

お礼日時:2008/02/15 04:26

こんばんは。



x + 2y + z = 0
2x - y + z = 0
差を取れば、
-x + 3y = 0
x = 3y
これを、
x = 3y = 3t
と置きます。

最初の式より
x + 2y + z = 0
3t + t + z = 0
z = -4t

よって、2つのベクトルに直交するベクトルは、
(3t, t, -4t)
で表されます。

以上でベクトルの方向は決まりましたが、単位ベクトルなので、絶対値を1にしなくてはいけません。
√[ (3t)^2 + t^2 + (-4t)^2 ]
 = t・√( 3^2 + 1^2 + 4^2 )
 = t・√( 9 + 1 + 16 )
 = t・√26
これが1と等しいという条件で、tが決まります。
    • good
    • 0
この回答へのお礼

ご解説ありがとうございます。
また質問で申し訳ないのですが、x=3y=3tと置いたときなのですがこの場合z=-5tになると思うのですがいいのでしょうか?

お礼日時:2008/02/15 04:19

xの長さが1である条件が抜けてませんか?



x=(u,v,w)とすると、
a・x=0,b・x=0より、
1・u+2・v+1・w=0
2・u-1・v+1・z=0
∴u=3v,w=-5v
xの長さが1という条件より、
u^2+v^2+w^2=1
∴v=±(1/√35)
以上より、...
    • good
    • 1
この回答へのお礼

ご解説ありがとうございます。
おっしゃる通りxの長さが1という条件が抜けていました。
あとは代入すればという事ですね。
ありがとうございます。

お礼日時:2008/02/15 04:22

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング