マーベルの伝説はこの男から…。アイアンマンを紐解く! >>

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

このQ&Aに関連する最新のQ&A

A 回答 (2件)

まず、全部 積分定数Cが抜けています。

また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。
    • good
    • 54
この回答へのお礼

ありがとうございます!
数3は習っていないので、これから図書館にいって何か本を借りてこようと思います。
今回の問題は理解することができました。
本当に感謝します!

お礼日時:2009/02/08 10:42

すなおに、


x^n の公式に当てはめてください。

n = -2 として公式を使えば、求められます。
    • good
    • 27

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Qy=x^(1/x) の 微分

y=x^(1/x) の微分を教えてください。
簡単な問題なのにすいません。

Aベストアンサー

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log|y|)'
= y' / y
= y' / { x^(1/x) }

となります。

(log|y|)' = { (1/x)log|x| }'
→y' / { x^(1/x) } = { (1/x)log|x| }'

この両辺に{ x^(1/x) }をかけると

y' = { x^(1/x) } × { (1/x)log|x| }'

となります。
なので{ (1/x)log|x| }'の計算をすればy'が求まります。
積の微分で解いてください。

対数微分法で微分できます。まずは両辺の対数をとって

y = x^(1/x)
→log|y| = log|x^(1/x)|
→log|y| = (1/x)log|x|

このlog|y| = (1/x)log|x|の両辺をxで微分します。

まず左辺をxで微分することを考えます。
f(x) = log|x|とおき、g(x) = yとおくと、
log|y| = f(g(x))
ですので、

(log|y|)'
={ f(g(x)) }'
= f'(g(x)) × g'(x)

です。f'(x) = 1/xですのでf'(g(x)) = 1/y、
g'(x) = (y)' = y'より、
(log|y|)'
= f'(g(x)) × g'(x)
= y' / y

です。
y = x^(1/x)を代入すると

(log...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

価格.com 格安SIM 料金比較