はじめての親子ハイキングに挑戦!! >>

不定積分の問題なのですが、
∫√(4-x^2)dxの答えがどうしても導けません。
助言をお願いします。

A 回答 (2件)

∫√(4-x^2)dx


=4∫(cos(t))^2dt←x=2sin(t),|t|≦π/2とおく。
=2∫(1+cos(2t))dt
=2t+sin(2t)+C
=2 arcsin(x/2)+(x/2)√(4-x^2)+C

ここで、
sin(2t)=2sin(t)cos(t)=2 sin(t)√(1-(sin(t))^2)=
=x√(1-(x/2)^2)=(x/2)√(4-x^2)
    • good
    • 1
この回答へのお礼

ありがとうございます。
とても分かりやすかったです。

お礼日時:2007/10/16 09:11

x=2sinθとして置換積分してみてください。

    • good
    • 1
この回答へのお礼

最初の取っ掛かりから間違っていました。
ありがとうございます。

お礼日時:2007/10/16 09:12

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q1/√(4x-x^2)の積分がわからず困っています。

1/√(4x-x^2)の積分がわからず困っています。
分母を置換してもよくわからないです。
教えてください、お願いします。

Aベストアンサー

まずルートの中を平方完成
  4x-x^2 = 4-(x-2)^2
x-2=yと置いて置換
  ∫dx/√(4-(x-2)^2) = ∫dy/√(4-y^2)
ルートの中を因数分解
  ∫dy/√(4-y^2) = ∫dy/√((2+y)(2-y))
1/(2+y)を括り出す
  ∫dy/√((2+y)(2-y)) = ∫{1/(2+y)}・√((2+y)/(2-y))dy
z=√((2+y)/(2-y))と置くと
 y = -2(1-z^2)/(2+z^2)
 dy/dz = 12z/(2+z^2)^2
 1/(2+y) = 1/(2-2(1-z^2)/(2+z^2)) = (2+z^2)/(2(1+2z^2))
これで置換をするとzについての有理関数になる。
あとは分母を2次以下に因数分解して、部分分数展開して項ごとに積分。

Q∫x^2√(4-x^2)dxの積分

∫x^2√(4-x^2)dxの積分についてです。
以下のように解いて見たんですが,
∫x^2√(4-x^2)dx
=1/3x^3√(4-x^2)-1/3∫x^3√(4-x^2)dx
=1/3{x^3√(4-x^2)-∫[-2x/2√(4-x^2)]x^3dx}
=1/3{x^3√(4-x^2)-∫[-x^4/√(4-x^2)]3dx}
=1/3{x^3√(4-x^2)-∫[16-x^4/√(4-x^2)]dx+[16/√(4-x^2)]dx}
=1/3{x^3√(4-x^2)-∫(4+x^2)√(4-x^2)dx+16sin^-1x/2}
右辺の∫x^2√(4-x^2)dxを左辺に移動させると
4/3∫x^2√(4-x^2)dx=1/3{x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2}
両辺を3倍して
4∫x^2√(4-x^2)dx=x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2
よって
∫x^2√(4-x^2)dx=1/4{x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2}

となりました。途中式・解答はあってますか?よろしくお願いします。

∫x^2√(4-x^2)dxの積分についてです。
以下のように解いて見たんですが,
∫x^2√(4-x^2)dx
=1/3x^3√(4-x^2)-1/3∫x^3√(4-x^2)dx
=1/3{x^3√(4-x^2)-∫[-2x/2√(4-x^2)]x^3dx}
=1/3{x^3√(4-x^2)-∫[-x^4/√(4-x^2)]3dx}
=1/3{x^3√(4-x^2)-∫[16-x^4/√(4-x^2)]dx+[16/√(4-x^2)]dx}
=1/3{x^3√(4-x^2)-∫(4+x^2)√(4-x^2)dx+16sin^-1x/2}
右辺の∫x^2√(4-x^2)dxを左辺に移動させると
4/3∫x^2√(4-x^2)dx=1/3{x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1x/2}
両辺を3倍して
4∫x^2√(4-x^2)dx=x^3√(4-x^2)-∫(4√(4-x^2)dx+16sin^-1...続きを読む

Aベストアンサー

1行目の第2項の積分の中の「√(4-x^2)」に微分記号が抜けています.
でも,2行目でしっかり微分されているので,OKです.
4行目の第3項に記号∫が抜けていますが,5行目でしっかり積分されているのでOK!
後は合っていますが,最後の答えの中に
  ∫(4√(4-x^2)dx
が残っており,まだ積分の計算は完了していません.
  ∫(4√(4-x^2)dx
の積分は,x = 2sint と置き換えて積分すれば
  ∫(4√(4-x^2)dx = 4 * (1/2){x√(4 - x^2) + 4sin^-1x/2}
が求められますので,計算してみてください.
上記とあわせると,答えは
 ∫x^2√(4-x^2)dx = (1/4)x^3√(4-x^2) - (1/2)x√(4 - x^2) + 2sin^-1x/2
となるはずです.

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q積分∫[0→1]√(1-x^2)dx=π/4

定積分∫[0→1]√(1-x^2)dx=π/4
この計算の仕方が分かりません。
x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。
∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?
次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり
=π/4となる様です。計算の説明を分かりやすくお願い致します。
また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう?

Aベストアンサー

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形になります

(1/2)∫[0→π/2](1+cos2θ)dθ

=(1/2) [ θ + (1/2) sin 2θ] (0→π/2)

= (1/2){(π/2 + sin π)ー(0 + sin 0)}
= (1/2)(π/2 )
=π/4

> また、π/4 は 45°で、
> cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、
> それとの関係はどうなるのでしょう?

上記の積分の π/4  は面積
π/4 は 45°という時の π/4  は角度
ですので、関係は深く考えても仕方ありません

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形に...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q∫1/x√(x^2+1) の積分について。

∫1/x√x^2+1を積分しろ
という問題があるのですが、解答をみると
√(x^2+1)=t-x
と、置き換えて積分していくのですが、僕は
√(x^2+1)=t
とおいて積分したのですが、これでは出来ないのでしょうか?
一応これでも計算はできた(つもり?)のですが、解答と答えが違っていたのでどこかで、ミス(思い違い?してはいけないことをした?)があったのかと思うのですが…。

答えは
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|
です。
僕の置換の方法でやると、
1/2log|√(x^2+1)-1/√(x^2+1)+1|
です。

Aベストアンサー

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^2+1))]|
=Log―――――――――――――――――――――――――
              |(x+1)^2-(x^2+1)|


     |x^2-(1-√(x^2+1))^2|
=Log―――――――――――――――
              |2x|


     |x^2-1+2√(x^2+1)-x^2-1|
=Log――――――――――――――――――
              |2x|


     -1+2√(x^2+1)-1
=Log――――――――――――
              |2x|


     √(x^2+1)-1
=Log―――――――――
        |x|


     [√(x^2+1)-1][√(x^2+1)+1]
=Log―――――――――――――――――
        |x[√(x^2+1)+1]|


         |x^2|
=Log――――――――――――
     |x[√(x^2+1)+1]|


           |x|
=Log――――――――――――
      √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
------------------------------------------------------------

1/2log|√(x^2+1)-1/√(x^2+1)+1|

   1        √(x^2+1)-1
 ――― ・ Log――――――――――――
   2        √(x^2+1)+1


   1        [√(x^2+1)-1][√(x^2+1)+1]
=――― ・ Log―――――――――――――――――
   2        [√(x^2+1)+1][√(x^2+1)+1]


   1            |x^2|
=――― ・ Log――――――――――――
   2        [√(x^2+1)+1]^2


            |x|
= Log――――――――――――
       √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
-----------------------------------------------------------

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^...続きを読む

Q次の積分の解き方を教えてください

∫√(1+4x^2)dxの解き方を教えてください、またどうして∫√(1+x^2)dx=1/2{x√(1+x^2)+log(x+√(1+x^2))}+となるのかを教えてください

Aベストアンサー

← A No.1 補足
不定積分ができたなら、定積分は代入計算にすぎない。
∫√(1+4x^2)dx = (x/2)√(1+4x^2) + (1/4)log(2x+√(1+4x^2)) + (積分定数)
の右辺に、x=2 と x=0 を代入して、引き算しよう。
不定積分を置換積分で計算した後、変数を x に戻さないでいると、
4=tanθ となる θ の値は何だ? という所で、詰まってしまうかもしれないが。


人気Q&Aランキング