
No.4ベストアンサー
- 回答日時:
あとご指摘のように不定積分の任意定数Cを調整して
0≦x≦2πで連続な原始関数を作る手もあります。
たとえば
0≦x<πでF(x)=2arctan(3tan(x/2))
π<x≦2πでF(x)=2arctan(3tan(x/2))+2π
F(π)=πとして0≦x≦2πでF(x)を定義すれば
このあらたなF(x)は0≦x≦2πで連続で
x=π以外でもちろん微分可能で
F’(x)=f(x)=3/(5-4cosx)ですが実はx=πでも微分可能で
F’(π)=f(π)になることが平均値の定理を使って証明できます。
このあらたな原始関数をつかっても
表題の定積分=2πがでます。
No.3
- 回答日時:
いま、
f(x)=3/(5-4cosx)とおいて
G(x)=∫[0→x]3/(5-4cost)dt とおきます。すると
周知のようにG’(x)=f(x)なのでG(x)は連続関数です。
したがってlim(x→π-0)G(x)=G(π)
一方0≦x<πで
F(x)=2arctan(3tan(x/2))は連続で
f(x)の原始関数だから
0≦x<πで
G(x)=F(x)-F(0)=F(x)とかけます。
ゆえに
G(π)=lim(x→π-0)G(x)=lim(x→π-0)F(x)=π
となるわけです。
No.2
- 回答日時:
x=2π-tとすれば
∫[π→2π]3/(5-4cosx)dx=∫0→π]3/(5-4cosx)dxがわかるので
求める積分Iは
I=2∫[0→π]3/(5-4cosx)dxになる
さて
F(x)=2arctan(3tan(x/2))は0≦x<πで連続で
lim(x→π-0)F(x)=πだから
∫[0→π]3/(5-4cosx)dx=lim(x→π-0)F(x)-F(0)と計算されます。
したがってI=2π になります。
この回答へのお礼
お礼日時:2022/06/09 17:59
ありがとうございます。
原始関数は連続なはずなのに極限の議論になるのが不思議です。
2arctan(3tan(x/2)) (0≦x<π)を連続になるように階段状につなぎ合わせたものを原始関数のひとつと思ってもよいのでしょうか?
No.1
- 回答日時:
不定積分を求めたときに
t = tan(x/2) で置換したんじゃないかと思う。
sin x と cos x の入った分数式は
この置換で不定積分できるって、例のヤツで。
このとき、x→t の対応が x=π で非正側
になっているから、定積分をここで分割して
∫[0,2π] = ∫[0,π) + ∫(π,2π] と
右辺の積分を広義積分で捉える必要があった。
だから、そから先は
F(x) = 3 arctan(2 tan(x/2)) に対して
{ lim[x→π-0] F(x) - F(0) }
+ { F(2π) - lim[x→π+0] F(x) }
を計算すればいい。
単純に F(2π) - F(0)
としてはいけないから。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学3の、定積分に関する質問です。 ∫上端e^2下端1{dx}/{x}という問題で、[log|x|] 1 2022/06/16 12:00
- 数学 ∫[-π,π]1/(2+cosx) dxの積分はできて、 ∫[0,2π]1/(2+cosx) dxの 3 2023/02/06 12:08
- 数学 積分の計算にてこづっています。2曲線の面積を求める問題なのですが [-1/2cos2x+cosx]上 4 2022/06/25 12:55
- 数学 1/(4cos^2x+sin^2)で、 tan(x/2)=tとおいたとき、 sinx=2t/(1+t 2 2022/07/04 13:58
- 数学 グラフで囲まれた面積を求める問題で 区間a〜b(a<b)で定積分∫f(x)-g(x)dx=-aと負の 3 2023/02/08 23:05
- 高校 数学III 積分 数学IIIの積分でf(ax+b)の積分公式がありますが b=0の時どのように考えれ 4 2022/09/30 02:06
- 数学 微分積分の二重積分についての問題がわからないです 2 2022/08/08 15:19
- 物理学 ポテンシャルが有限で不連続の時、右側の波動関数をφ1(x)、左側をφ2(x)とする。境界条件の「波動 2 2023/06/04 13:53
- 数学 微分積分の極限についての問題がわからないです。 1 2023/01/08 13:57
- 数学 微分積分についての問題がわからない です。 3 2022/08/08 15:13
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
∫1/(x^2+1)^2 の不定積分がわ...
-
e^-2xの積分
-
ある積分の問題。∫1/√(x^2+A) =...
-
【全微分について】 z=f(x,y) ...
-
微積分 dの意味
-
微分でd/dx (xp) = p+x dp/dx
-
数列の極限について
-
項の右端につく縦棒の意味を教...
-
フーリエ級数の問題で、f(x)は...
-
積分 Xの-2乗を積分するとどう...
-
y=ax^2が満たす微分方程式を解...
-
dy=dy/dx・dxの求め方
-
z=(-x/y)*(dy/dx) を dz/dxで微...
-
媒介変数を使った関数のグラフ
-
解が10になる定積分の問題(難易...
-
虚数「i」の無限大への極限
-
・x=e^tの条件は最後の解に代入...
-
積の微分の公式 (dfdg/dx)=0?
-
微分方程式 について d²y/dx² ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
e^-2xの積分
-
∫1/√x dx 積分せよ 教えて下さい
-
積分 Xの-2乗を積分するとどう...
-
∫1/(x^2+1)^2 の不定積分がわ...
-
微積分 dの意味
-
1/X^2の積分ってlogX^2ですか?
-
2次微分の変数変換
-
【数学Ⅱ・Ⅲ】微分の問題
-
項の右端につく縦棒の意味を教...
-
exp(-ax^2)*cosx の証明
-
確率密度関数をf(x)=1-|x-1|と...
-
定積分∫[3→0]|x^2-4|dxの答え...
-
x/(a^2+x^2)の積分について
-
フーリエ級数の問題で、f(x)は...
-
e^-1/Tの積分
-
∫x^2√(4-x^2)dxの積分
-
数IIの積分法について
-
∫e^cos(x) dx の計算
-
y=f(x)と y′=f′(x)と dy/dxと d...
おすすめ情報