これからの季節に親子でハイキング! >>

∬1/√(x^2+y^2)dxdy を求めよ。
積分範囲は、1=<x^2+y^2=<4,x>=1,y>=0
次のようにやってみました。
∫[1->2]{∫[0->√(4-x^2)]1/√(x^2+y^2)dy}dx
=∫[1->2]{log(y+√(y^2+x^2)}[0->√(4-x^2)]dx
=∫[1->2]{log(√(4-x^2)+2)-logx)dx
となりました。ここからxについての積分ができません。
アドバイスをお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

このような形の積分は極座標変換するのが一般的かと思います。



D={(x,y)|1≦x^2+y^2≦4,0≦x,0≦y}.

x=rsin(θ).
y=rcos(θ).

この変数変換のヤコビアンは、r。

dxdy=rdrdθ.
積分領域DはE={(r,θ)|1≦r≦2,0≦θ≦π/4}に変わる。

∬[D]dxdy/(x^2+y^2)
=∬[E]drdθ/r
=∫[0,π/4]dθ∫[1,2]dr/r}
=πlog(2)/4.

この回答への補足

積分の領域がドーナッツだったら、それで良いと
考えましたが、ドーナッツでなくてもいいのでしようか。
よろしくお願いします。

補足日時:2010/07/27 09:24
    • good
    • 2

このQ&Aに関連する人気のQ&A

^」に関するQ&A: e^(-x^2)の積分

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>

重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>0) D: x^2 + y^2 <= a^2を極座標
で解こうとしているのですが、うまくいきません。
本の答えの"(2πa^3)/3"まで、どうにか辿り着かせてください。m(__)m

自分がやったところまで書きますと、
0 <= r <= a (自信なし)
0 <= θ <= 2π
√(a^2 - (r cos(θ))^2 - (r sin(θ))^2)
=√(a^2 - r^2 cos(θ)^2 - r^2 sin(θ)^2)
=√(a^2 - r^2(cos(θ)^2 + sin(θ)^2))
=√(a^2 - r^2)
(この時点でθが残ってないのが怪しい…)

∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
=∫[0,2π] dθ ∫[0,a] (a^2 - r^2)^(1/2) dr
=∫[0,2π] dθ [(2/3)(1/2r)(a^2 - r^2)^(3/2)][0,a] (ここからまったく自信なし)
=∫[0,2π] dθ [(1/3r)(a^2 - r^2)^(3/2)][0,a]
=∫[0,2π] dθ [(1/3a)(a^2 - a^2)^(3/2)] - [(1/3(0))(a^2 - 0^2)^(3/2)]
…0では割れないので間違っているはずです。

計算機で∫[0,a] (a^2 - r^2)^(1/2) drを解くと
(a・|a|・π)/4
と出ます。これも正しいのか分かりません。

まずは、この問題でのrとθの範囲の取り方を教えてください。
お願いします。

重積分∫∫_D √(a^2 - x^2 - y^2) dxdy (a>0) D: x^2 + y^2 <= a^2を極座標
で解こうとしているのですが、うまくいきません。
本の答えの"(2πa^3)/3"まで、どうにか辿り着かせてください。m(__)m

自分がやったところまで書きますと、
0 <= r <= a (自信なし)
0 <= θ <= 2π
√(a^2 - (r cos(θ))^2 - (r sin(θ))^2)
=√(a^2 - r^2 cos(θ)^2 - r^2 sin(θ)^2)
=√(a^2 - r^2(cos(θ)^2 + sin(θ)^2))
=√(a^2 - r^2)
(この時点でθが残ってないのが怪しい…)

∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
=∫[0,2π] d...続きを読む

Aベストアンサー

x や y をどのように置くのか書かないとダメだろ.... 自分の中だけで完結するならともかく, このように他人の目に触れることを前提にするなら「書かなくてもわかってくれるはず」という甘えはなくしてほしい.
で x = r cos θ, y = r sin θ とおくと
√(a^2 - x^2 - y^2) = √(a^2 - r^2) です. ここは θ が消えるのが正解... というか, ここで θ が残らないように置換しているんだから消えて当然, 消えない方がおかしい.
でそこはいいんだけど
∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
は間違っています. 置換積分についてきちんと確認してください.
なお, ここから既に間違っているので本筋とは全く関係ありませんが
∫[0,2π] dθ ∫[0,a] (a^2 - r^2)^(1/2) dr
=∫[0,2π] dθ [(2/3)(1/2r)(a^2 - r^2)^(3/2)][0,a]
も間違いです.
で (この問題とは全く無関係なので) もう本当にどうでもいいのですが
「計算機で∫[0,a] (a^2 - r^2)^(1/2) drを解くと
(a・|a|・π)/4
と出ます」の部分は正しい.

x や y をどのように置くのか書かないとダメだろ.... 自分の中だけで完結するならともかく, このように他人の目に触れることを前提にするなら「書かなくてもわかってくれるはず」という甘えはなくしてほしい.
で x = r cos θ, y = r sin θ とおくと
√(a^2 - x^2 - y^2) = √(a^2 - r^2) です. ここは θ が消えるのが正解... というか, ここで θ が残らないように置換しているんだから消えて当然, 消えない方がおかしい.
でそこはいいんだけど
∫∫_D √(a^2 - x^2 - y^2) dxdy
=∫∫_E √(a^2 - r^2) drdθ
は間違っていま...続きを読む

Qx/(a^2+x^2)の積分について

x/(a^2+x^2)の積分について

t=a^2+x^2とおいて
dt=2xdx
よって
∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C
と置換積分により積分することが出来ますが、
部分積分では計算できないのでしょうか?

(a^2+x^2)'=2x
∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx
として計算できると思ったのですが、うまく行きません。
どなたかアドバイス頂けたら幸いです。

Aベストアンサー

#2です.

部分積分 ∫f(x)g'(x)dx=f(x)g(x)-∫f'(x)g(x)dx が,実は,
積の微分 (f(x)g(x))'=f'(x)g(x)+f(x)g'(x) を積分して
構成した式である.と言うことは,ご存じでしょう.

また,部分積分の式は,

∫f(x)g(x)dx=f(x)∫g(x)dx-∫(f'(x)∫g(x)dx)dx

と書くこともあります.ですから,私は,∫f(x)g(x)dx を得たい時,
まず,∫(f'(x)∫g(x)dx)dx が積分できるかどうかを調べます.

一般に,積分や微分方程式を解く場合に,ある決まった統一的な,
方法というものがありません.個々の場合について,想像力や創造力を
働かして,個別に,新しく考えねばなりません.そこが,また,魅力とも言えるでしょう.

高校,大学の演習問題ならば,過去に考えられている方法のいずれかが応用できます.
しかし,大学院や社会へ出るなどして直面する問題には,新しい方法を必要とする場合が多いです.
その時は,過去の応用問題は役に立たず,やはり想像力や創造力を発揮しなければ解決しない事が多いでしょう.

そこで,あなたが,

>>「部分積分の形にすることができれば必ず求めたい積分が得られる!」

のではないか,と思い込んだ,その着想が大事なのです.
そういう着想・アイデア・手がかりの思いつき,などがなければ,物事の進歩・発展はないのです.

そう言う,あなたの意識が「お礼」に書かれていましたので,
また,この様な,つたない回答(投稿)となりました.

●(注)些細な事かも知れませんが,f(x)の微分は,
  f(x)' ではなく f'(x) と書くのが正しいと思います.
  手書きで書く時も,カッコの後にプライム(ダッシュ)をつける
   f(x)' ではなく,f にプライムを付けて,f'(x) と書いています.
  私は,学生時代から今に至るまで,永年その様に書いていますが,
  最近の記号法は変わりましたか?

とめどもない書き込みで,お時間を取らせまして,大変失礼いたしました.

#2です.

部分積分 ∫f(x)g'(x)dx=f(x)g(x)-∫f'(x)g(x)dx が,実は,
積の微分 (f(x)g(x))'=f'(x)g(x)+f(x)g'(x) を積分して
構成した式である.と言うことは,ご存じでしょう.

また,部分積分の式は,

∫f(x)g(x)dx=f(x)∫g(x)dx-∫(f'(x)∫g(x)dx)dx

と書くこともあります.ですから,私は,∫f(x)g(x)dx を得たい時,
まず,∫(f'(x)∫g(x)dx)dx が積分できるかどうかを調べます.

一般に,積分や微分方程式を解く場合に,ある決まった統一的な,
方法というものがありません.個々の場合について,想...続きを読む

Q二重積分

∫∫e^{-(x+y)^2} dxdy (積分領域はx≧0,y≧0)
の求め方が分かりません。
色々置き換えなどをやってみたのですが
(例えばx+y=u,x=vとかx+y=u,x-y=vなど)
うまくいきません。
どなたか教えていただけないでしょうか?
よろしくお願いします。

Aベストアンサー

u=x+y,v=xとおくと、積分範囲は、D={(u,v)|u≧0, 0≦v≦u}
ヤコビアンを考えて、dxdy=dudv

∫∫_{D} e^(-u^2) dudv
=∫{u:0→∞}e^(-u^2)*{∫{v:0→u}dv}du
=∫{u:0→∞}ue^(-u^2)du
=[(-1/2)*e^(-u^2)]
=1/2

・・・極座標より、よっぽど簡単だと思いますが。

Q2変数関数の極限値の解き方(色々なケース)

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)は極限値は0をとる。


(2) lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2+2y^2)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2+2y^2)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2+2y^2)/√(x^2+y^2)は極限値は0をとる。


(3) lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+2y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+2y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+2y^2)は極限値は0をとる。


(4) lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x-y^2)/(x^2-y) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x-y^2)/(x^2-y) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x-y^2)/(x^2-y)は極限値は0をとる。


(5) lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (y^2)/(x^2+y^2) = 1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (y^2)/(x^2+y^2) = 0
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (y^2)/(x^2+y^2)は極限値を持たない。


(6) lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2-y^2)/(x^2+y^2) = -1
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2-y^2)/(x^2+y^2) = 1
上記より、異なる近づけ方をすると極限値が1つに定まらない。
よって、lim [(x,y)→(0,0)] (x^2-y^2)/(x^2+y^2)は極限値を持たない。


(7) lim [(x,y)→(0,0)] (xy)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/(x^2+y^2)は極限値は0をとる。


(8) lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (x^2y)/(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (x^2y)/(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (x^2y)/(x^2+y^2)は極限値は0をとる。


もし、導き方がおかしいようなら、ご指摘いただければと思います。
以上、ご指導のほどよろしくお願いします。

以下の8問の2変数関数の極限値を求めてる問題を解いてみたのですが
計算結果が正しいか自信がありません。
わかる方、ご指導よろしくお願いいたします。

【問題】
次の極限値は存在するか。存在する時には、その極値を求めよ。

(1) lim [(x,y)→(0,0)] (xy)/√(x^2+y^2)

まず、x→yの順に近づける。
lim[y→0]lim[x→0] (xy)/√(x^2+y^2) = 0
次に、y→xの順に近づける。
lim[x→0]lim[y→0] (xy)/√(x^2+y^2) = 0
上記より、異なる近づけ方でも極限値が1つに定まる。
よって、lim [(x,y)→(0,0)] (xy)/√(x^...続きを読む

Aベストアンサー

訂正
(1)は式に絶対値をつけとかんといかんかった。
|(xy)/√(x^2+y^2)|=|x|/√(x^2+y^2)・|y|/√(x^2+y^2)・√(x^2+y^2)
≦1・1・√(x^2+y^2) →0
(3)と(8)も。
失礼しました。

Q広義重積分の問題です。

∬1/√(x^2+y^2)dxdy ,D={(x,y)|0≦x≦1,0≦y≦1}
この問題がどうしても解けません。解答を教えていただけるとありがたいです。よろしくお願いします。

Aベストアンサー

I=∬[D] 1/(x^2+y^2)^(1/2)dxdy
t=x/yと置くと
=∫[0,1] dy ∫[0,1/y] 1/(1+t^2)^(1/2) dt
=∫[0,1] dy [asinh(t)] [t:0,1/y]
=∫[0,1] asinh(1/y) dy
=[y*asinh(1/y)+(1/2)log{√(1+(1/y)^2)+1}-(1/2)log{√(1+(1/y)^2)-1}] [x:0,1]
=asinh(1)+(1/2)log{(√2+1)/(√2-1)}-lim[y→+0] y*asinh(1/y)
+(1/2)lim[y→+0]log[{√(1+(1/y)^2)-1}/{√(1+(1/y)^2)+1}]
=log(1+√2)+log(√2+1)-0 +(1/2)lim[y→+0]log[{√(y^2+1)-y}/{√(y^2+1)+y}]
=2log(1+√2) + log(1)
=2log(1+√2) +0
=2log(1+√2)

【注】逆双曲線関数:asinh(x)=log{x+√(1+x^2)}, asinh(1)=log(1+√2)
   (対数は自然対数)

I=∬[D] 1/(x^2+y^2)^(1/2)dxdy
t=x/yと置くと
=∫[0,1] dy ∫[0,1/y] 1/(1+t^2)^(1/2) dt
=∫[0,1] dy [asinh(t)] [t:0,1/y]
=∫[0,1] asinh(1/y) dy
=[y*asinh(1/y)+(1/2)log{√(1+(1/y)^2)+1}-(1/2)log{√(1+(1/y)^2)-1}] [x:0,1]
=asinh(1)+(1/2)log{(√2+1)/(√2-1)}-lim[y→+0] y*asinh(1/y)
+(1/2)lim[y→+0]log[{√(1+(1/y)^2)-1}/{√(1+(1/y)^2)+1}]
=log(1+√2)+log(√2+1)-0 +(1/2)lim[y→+0]log[{√(y^2+1)-y}/{√(y^2+1)+y}]
=2log(1+√2) + log(1)
=2log(1+√2) +0
=2log(1+√2)

【注】逆双曲線関数:asinh(x...続きを読む

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q広義重積分の積分範囲について

次の積分を求めよ。
(1)
D={(x,y):0≦y<x≦1}のときの∬_D(1/√(x-y))dxdy

(2)
E={(x,y):0<x≦y≦1}のときの∬_E(1/√(x^2+y^2))dxdx

という二つの問題についてですが、解答を見て(1)についてはDをD_n={(x,y):1/n≦x≦1,0≦y≦x-(1/n)}とすればよいというのは分かったのですが、(2)についてはE_nを決めることが出来ません。解答には「E_nを右図のようであるとする」と書いていたのですが図は明らかにE_n={(x,y):0≦x≦y,1/n≦y≦1}となっていました。
これでは最終的にn→∞としても最初の条件である0<xが満たされないのでダメなように見えるのですがこれでよいのでしょうか?また解答のように図で示すのではなく上に書いたような不等式で示すにはどのように書けばよいのでしょうか?(この問題に関して)
まだ何題かしか解いていないのでイマイチ範囲の取り方がつかめません。何かポイントがありましたらアドバイスよろしくお願いします!

Aベストアンサー

#1,#2です。
A#2に補足質問についての回答

>「D_nを導入しなくても∫[0→1]dy∫[y→1](x-y)^(-1/2)dx=4/3計算できます」と計算できるのは分かりますがここでxの積分範囲は[y→1]となっていてy<x≦1と合わないのでやはりD_nを導入して極限を使わなければダメな気がするのですが...

厳密に言えば等号を含まない場合の積分の上限、下限では極限を取らないといけないことはおっしゃる通りです。ただし、積分が発散しないような場合は、極限を取らなくても積分結果は極限をとった場合と同じ積分結果が正しく求まりますね。

極限を取らない場合の積分の考え方
ステップ1)
0≦y<1の範囲の任意のyを固定して
xで積分するわけです。
ここではxについての積分ですのでyは定数になります。
xの積分範囲はy<x≦1から[y→1]ですね。
厳密に言えばy<xで等号を含んでいませんのでxの下限はyでないですが
∫[y→1](x-y)^(-1/2)dx=2√(1-y)となります。

ステップ2)
今度は0≦y<1から積分範囲は[0→1]
∫[0→1]2√(1-y)dy=4/3

となります。

>ちなみに(2)も極限を取るにせよ結局は積分しなければ進めませんよね?

そうですね。積分を少し工夫しないといけませんね。
多分、ヤコビアンを使って変数変換をしないといけませんね。少し考えて見ましょう。

ただし、それが出来れば
∫[0→1]dy∫[0→y]{1/√(x^2+y^2)}dx
からも計算できてしまいますね。

#1,#2です。
A#2に補足質問についての回答

>「D_nを導入しなくても∫[0→1]dy∫[y→1](x-y)^(-1/2)dx=4/3計算できます」と計算できるのは分かりますがここでxの積分範囲は[y→1]となっていてy<x≦1と合わないのでやはりD_nを導入して極限を使わなければダメな気がするのですが...

厳密に言えば等号を含まない場合の積分の上限、下限では極限を取らないといけないことはおっしゃる通りです。ただし、積分が発散しないような場合は、極限を取らなくても積分結果は極限をとった場合と同じ積分結果が正しく求まりま...続きを読む

Q楕円の変数変換

楕円E:(x/a)^2+(y/b)^2≦1 に関して
面積 ∬_E dxdy を求めるとき、
変数変換 x=ar*cosθ,y=br*sinθ を行うと、楕円 E の r,θ での表示 E' はどのようになるのでしょうか?

Aベストアンサー

E={(x,y)|(x/a)^2+(y/b)^2≦1}
E'={(r,θ|0≦r≦1,-π≦θ<π}
 または
E'={(r,θ|0≦r≦1,0≦θ<2π}
で良いでしょう。

なお、積分の変数変換でヤコビアン|J|を忘れないようにして下さい。
つまり
dxdy=|J|drdθ=abrdrdθ
∫[E] dxdy=∫[E'] abrdrdθ
 =4ab∫[0,π/2] dθ∫[0,1] rdr
 =2πab[r^2/2](r=1)
=πab
ということです。


このQ&Aを見た人がよく見るQ&A