[PR]ネットとスマホ OCNでまとめておトク!

定積分ですが、

 B
∫ f(x)dx
 A

これを声に出して読むとき、どう読みますか?

できるだけ沢山の方々の意見をお聞きしたいです。
同じ回答がいくつあっても結構です。
(ポイントは、抽選で差し上げる予定です。)

ちなみに私は、
「インテグラルAからBのエフエックス・ディーエックス」
と読んでいます。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

 私は、


  エフエックスのAからBの積分.
です。ポイントは、
 1)英語不得意なので、インテグラルとは言いたくない.
 2)エフエックスと言ってるのだから、ディーエックスと言う必要なし.
 3)日本語の「の」のいい加減さから、情報の順序は自由.

よって、
  AからBのエフエックスの積分.
も可です。

この回答への補足

皆様ありがとうございました。
約束どおり、抽選で2名の方にポイントを差し上げます。
(表計算の乱数機能)
はずれの方々、すみません。

補足日時:2007/09/10 19:44
    • good
    • 2
この回答へのお礼

ありがとうございました!

お礼日時:2007/09/10 19:53

工業高校でも大学でも定積分の読み方・発音の仕方を教えてはくれませんでしたので(私が休んだときに教えたのかも?),私は,自己流で「定積分,AからBまでのエフエックス・ディーエックス」と言っていました.この発音の仕方に対して,今までに,教授,講師,教諭,友人,知人,部下,上司などからの異論は聞いたことがありません.この言葉が通じていたことになります.


因みに,英語では,

   B
  ∫ f(x)dx
   A

を,"the integral from A to B of f of x d x."
と発音します.(BLUE BACKS「これを英語で言えますか?」p.101).
    • good
    • 5
この回答へのお礼

ありがとうございました!

ところで、英語ではf(x)を f of x と言うのですか。
知りませんでした。

お礼日時:2007/09/10 19:53

私もあなたと全く同じです。


大学の教授も黒板に書きながらそう言っていたと思います。
    • good
    • 2
この回答へのお礼

質問文に書いた私の読み方は我流なので、
大学の先生と全く同じとのことで、ちょっと驚きました。
ありがとうございました!

お礼日時:2007/09/10 19:51

通じればいいのだから適当に省略してたと思います。

「インテグラルエフ」「エフの[を]エーからビーまで(てい)せきぶん」

独り言の場合は「インテグラルエーからビーエフエックスディーエックス」

…困ってますか?
    • good
    • 0
この回答へのお礼

ありがとうございました!

お礼日時:2007/09/10 19:49

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分の記号について・・・

高校2年で、数学にはまってしまって、大学の数学を一人でやってます。そこで、積分の記号の読み方がわからなくてこまってます・・・。

2重積分∫∫や3重積分∫∫∫、周回積分∫の読み方、教えてください!!

Aベストアンサー

#1です。
補足します。

積分記号は「いんてぐらる」で変換すると「∫」と「∬」が出てきますから、後者は「ダブル・インテグラル(二重積分)」と呼んで区別しても良いですね。
同じ式中に前者と混在する場合は、前者を「シングル・インテグラル(一重積分)」と呼んで区別できます。
あえてカタカナ(英語)読みする必要は無いですが。

周回積分記号「∫」は、正式には経路積分記号ですが、通常、周回積分で通用します。英語読みの愛称(略称)は、他の積分記号と区別して、記号の形が「Φ」に似ていることから「∫」も「ファイ」と呼びます。
「ふぁい」と入力して変換すれば「∫」の記号が出てきます。
日本語の「周回積分」と呼べば通常十分です。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q積分の読み方が分かりません

微積分について勉強し始めたのですが、今、社会人で教われる方がおらず、本やインターネットしか情報源がないため、下記の記号のあたりの読み方が分かりません。
http://www.nikonet.or.jp/spring/integ_abc/m1.gif
の左半分の読み方をひらがなでご回答頂けませんでしょうか?

Aベストアンサー

 この記号「∫」のことでしょうか。
 これでしたら、「インテグラル」といいます。

 そのほかには、特に呼び名のある記号はないようですが、もしこれらの式を口頭で伝えるとしたら、次のようになると思います。(このように読んでこれまで差し障りはありませんでした。)

 「インテグラル 1から3の エックス自乗 ディーエックス イコール 大括弧 1から3までの 3分の1 エックス3乗 は ・・・」

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Qlogの読み方

対数の読み方を教えてください
log10とは ろぐじゅう と読むようですが

2が底の場合 log 2 8 = 3

ろぐに の はちイコールさんと読むのでしょうか?
よろしくお願いいたします

Aベストアンサー

#1さんの読み方でもいいですし、ろぐにのはち イコールさん でもいいです。

高校だと底が10(常用対数)やe(=2.71828・・・)だと省略することが多いですが、10かネイピア数(自然対数)eかを明確にするため、logeXのようなときは

logeX=lnXと書いて区別することが多いです。専門書では普通このように書いてあります。

読み方はナチュラルロガリズムエックスとかログナチュラルエックスとかいろいろあります。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q面積を表す文字になぜSをつかうことが多いのか

タイトルどおりの質問です。職場で突然、話題になりました。現在、スクエアの頭文字では、という意見が優勢です。いろいろな説があるのかもしれませんが、「何々では」という予想ではなく、それなりに根拠がある由来をご存知の方、ぜひ教えてください。

Aベストアンサー

No4.の補足です。

歴史的な経緯からすると、繰り返しになりますが、和を表すsumあるいはsummationの頭文字をとったものというのが、数学界での定説です。

同様の見解は、次のURLにも出ています。
三重大学で作った解析学のホームページ内の掲示板での質疑です。
そのものズバリの質問と回答が載っています。
http://www.com.mie-u.ac.jp/~kanie/tosm/keiji04/k_result.htm

そもそも曲線図形の面積を求める方法には2つあります。
(たとえば、野崎昭弘他著「微分・積分の意味がわかる」ベレ出版,2000年,p114参照)

1つは原始的な方法で、既にアルキメデスの時代から知られている、
「図形を細かく分けて、直線で囲む形にして近似し、足し合わせる」という、いわゆる区分求積法です。

この足し合わせるという語は、英語などではsumとかsummationといいます。
そして、後述するライプニッツおよびニュートンによる微積分学以降、
離散量あるいは有限個のものの和を表すのに、この頭文字Sに対応するギリシャ語のアルファベットΣが使われ、
「一つ一つの分割をS1,S2,S3,・・・とおけば、全体の面積S=ΣSi」
という数学記法上の慣習として広まったものです。

つまり、Sを、sumあるいはsummationの頭文字であるとする根拠がここにあります。そして、今では、曲線図形でない場合でも広く一般的に、図形の面積を表すのにSは利用されています。もちろん、面積をSとおくというのは、規則でも強制でもありません。

さて、もう1つ、曲線図形の面積を求める現代的な方法は、積分を使う方法です。
これは、上記のS=ΣSiという表現式で、i=1,2,・・・という分割を無限に続けたときの極限値をもって、その図形の面積とするというものです。
その場合、極限値が存在するなら、各Siは、連続量S(x)に書き換えられて、S=∫S(x)dxと表現されます。
そして、この積分記号(インテグラル記号∫)は、ライプニッツの提案によるもので、
離散量の和の記号Σに対応して、連続量の和として、これまた和を意味するSを縦に伸ばした、イメージ的にも優れた記号と言えます。この事実は、
たとえば、ホームページでは
http://www.nikonet.or.jp/spring/integral/print3.htm
書籍では、
船山良三「身近な数学の歴史」東洋書店,1991,pp.308-313.
などでも述べられています。

ところで、面積がSで表されている場合、書き手によっては、ある「領域(sphere)」の面積を表すという意味で、sphereの頭文字Sを使ったということはあり得ることです。
しかし、残念ながら、squareやsurfaceの頭文字であるとするのは、特別の場合を除いて可能性は低いと考えられます。

一般に、数学の文献では、
「面積」には、通常areaを使います。また、四角形の面積には area of square を、円柱の側面積には surface atea of cylinder を使います。つまり、squareは四角、surfaceは曲面の意味です。
これらは、文献では、
William Dunham"The Mathematical Universe",Wiley,1994.
ホームページでは、
http://www.communicatejapan.gr.jp/yuki/algebra/wordsbook.htm
http://www.monjunet.ne.jp/PT/sampo/006.htm
などでも示されています。

以上、補足です。

No4.の補足です。

歴史的な経緯からすると、繰り返しになりますが、和を表すsumあるいはsummationの頭文字をとったものというのが、数学界での定説です。

同様の見解は、次のURLにも出ています。
三重大学で作った解析学のホームページ内の掲示板での質疑です。
そのものズバリの質問と回答が載っています。
http://www.com.mie-u.ac.jp/~kanie/tosm/keiji04/k_result.htm

そもそも曲線図形の面積を求める方法には2つあります。
(たとえば、野崎昭弘他著「微分・積分の意味がわかる」ベレ出版,2000年...続きを読む

Qインテグラル∫とdxについて

非常にわかりにくい質問だと思いますが、ご容赦ください。∫f(x)dxという式があったとします。これは、積分の成り立ちから考えて、dxという記号が必要なのかどうかずっと疑問なのです。
積分の成り立ちはhttp://izumi-math.jp/sanae/MathTopic/sekibun/sekibun.htmのサイトを見て理解しました。
dxだけなら意味を持たないというのなら理解できます。∫dxがひとつのセットで積分という行為をするという風に捉えられるからです。でもdx単体でも意味を持ちますよね。でもこの成り立ちから考えて勝手にdxに意味を持たせていいのでしょうか。f(x)dxが微小面積で∫を作用させることによって足し合わせるという図のイメージはできますが、数式の上でどうしてそういう風なイメージになるのか理解できません。数学の得意な方、よろしくお願いします。

Aベストアンサー

そもそも積分とは何か,といえば,「細切れを足したもの」が積分です.
積分を計算したければ,細切れを足す計算を実行すれば(そして,その計算が実行可能なら),それでできます.
積分とは何かを説明するにも,積分を計算するにも,「微分の逆」は本来は出てきません.
積分は微分とは無関係に定義されるものです.

ライプニッツの記法は,この積分の定義を忠実に書き取ったものになっています.
「細切れを足す」以上,足されるべき個々の「細切れ」が何かを明らかにする必要があり,「f(x) に dx を掛ける」という操作を式の中に書くのは当然です.

ところが,微積分学の基本定理の発見によって,(1変数の場合は)わざわざ細切れを足さなくても「微分の逆」を使えばうまく積分を計算できるという「裏技」(←説明のために批判を恐れずあえてこう書きます)が編み出されたのです.
「積分は微分の逆」という標語は,「結果的に成り立つ事実」「計算のための便利な公式」という程度に認識すべきで,「積分とはそういうものである」と解釈すべきではありません.

高校数学カリキュラムで原始関数を使って積分を導入しているのは,「細切れを足すのを高校生にきちんと説明するのは困難だから」という消極的な理由による「方便」です.こういう高校数学の方便としての積分の見方は,大学で微積分学を学び始める段階でリセットすべきものです.

========
ところで,こうして積分の本来の意味とライプニッツの記法を見直してみると,∫ という記号はあくまで「足す」という意味で,「微分の逆をせよ」という意味は込められていないことに気づきます.その意味で,「∫ を微分の逆の作用素とみなして, dx を書かない」というのは,新たな記法の提案としても無理があるでしょう(∫ と dx のセットで「微分の逆」と説明するのなら,本来の意味とは異なるとはいえ,結果的につじつまが合うので,高校数学の方便として通用します).
1変数に限定して,たとえば I[f(x)] で f(x) の原始関数を表すとか,dx に相当する記号を使わない積分の記法を考案するのは自由ですし,そういう試みは過去にあったかもしれません.でも,そのような記法に,すでに定着したライプニッツの記法と比べて「dx を書く手間が省ける」以上のアドバンテージがあるとは思えず,提案してもたぶん流行らないでしょう.

そもそも積分とは何か,といえば,「細切れを足したもの」が積分です.
積分を計算したければ,細切れを足す計算を実行すれば(そして,その計算が実行可能なら),それでできます.
積分とは何かを説明するにも,積分を計算するにも,「微分の逆」は本来は出てきません.
積分は微分とは無関係に定義されるものです.

ライプニッツの記法は,この積分の定義を忠実に書き取ったものになっています.
「細切れを足す」以上,足されるべき個々の「細切れ」が何かを明らかにする必要があり,「f(x) に dx を掛ける」...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qeの読み方…

はじめまして
私は高校3年生の、今年受験生なのですが
この前に大学生に数学のわからない問題を聞いたときに
普段自分は
e(イー)の2x乗の微分…という所を
イクスターミナイシャル2xの
と言っていました。
あまりうろ覚えでイクスまではあってると思うのですがその後が、ターミネーションだったか、ターミネイタルだったか、覚えていません…

なんか、凄くかっこよかったので知っている方がいれば回答よろしくお願いします。

Aベストアンサー

僕は殆ど
「e(イー)の2x乗」の微分...
と言っていますがそれで通用しています。

まれに
「エクスポーネンシャル2x乗」の微分...

また
e^(2x) とか
exp(2x)
と書いたりしますが、
前者は「イーのニーエックス乗」と呼び
後者は「イーエクスピー・ニー・エックス」
と呼んで使っています。

eはネピア数(ネイピア数,Napier's Mumber)ですが、
Exponential function(指数関数) の頭文字でもありますね。


このQ&Aを見た人がよく見るQ&A