グッドデザイン賞を受賞したウォーターサーバー >>

∫1/logx dx この積分ってどうやってやりますか?
詳しい方法をお願いします。

A 回答 (2件)

定積分ではないので少し違うかもしれませんが、対数積分と呼ばれるものです。



下記URLを参照してください。
http://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0% …
    • good
    • 7
この回答へのお礼

回答ありがとうございます!
できるものだと思っていました…

お礼日時:2012/06/10 16:58

初等関数では表せない積分です。


私もよくわからないのですが,聞きかじったところによると積分対数関数とかいうそうです。
∫1/xlogx dx  なら解けるのに不思議ですね。
    • good
    • 2
この回答へのお礼

回答ありがとうございます!
一見簡単そうに見えてできないんですね…
本当に不思議ですね

お礼日時:2012/06/10 16:59

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q∫exp(x)/x dxの積分

こんにちは。

ラプラス変換で微分方程式を解く問題をといておりましたところ、
以下の式が出てきました。

L{X(t)} = (3+2s)/{(1+s)(2+s)(3+s)}
L{Y(t)} = (2+4s+s^2)/{s(2+4s)}

これを逆ラプラス変換してX(t)およびY(t)を求めようと思います。
部分分数展開して積分を行ったのですが、その際どうしても以下の
積分を求める必要が出てきます。

∫exp(s)/s ds ……(1)


∫exp(s)*s^n ds
において、nが自然数なら、部分積分で求めることができるのですが、
nが負の整数の場合、部分積分を行うと(1)で手詰まりになってしまいます。

仮に(1)を部分積分しても、
[(log|s|)exp(s)] - ∫(log|s|)exp(s) ds
となり、∫(log|s|)exp(s) ds を求めることができないので、先に進めません。

どうやれば(1)の積分は解けるのでしょうか?

Aベストアンサー

単純に部分分数分解を間違っているだけですね。
それとも、逆ラプラス変換を勘違いしているか、
どちらかです。

逆ラプラス変換は、ふつうは積分をして求めません
ラプラス変換して対称の関数になる関数を探す作業をします。

また、∫exp(x)/x dx は初等関数で解析的に解くことはできません。
ですが、複素広義積分の計算はできます

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q分子結晶と共有結合の結晶の違いは?

分子結晶と共有結合の結晶の違いはなんでしょうか?
参考書を見たところ、共有結合の結晶は原子で出来ている
と書いてあったのですが、二酸化ケイ素も共有結合の
結晶ではないのですか?

Aベストアンサー

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素SiO2の場合も
Si原子とO原子が共有結合し、この結合が立体的に繰り返されて
共有結合の物質というものをつくっているのです。
参考書の表現が少しまずかったのですね。
tomasinoさんの言うとおり、二酸化ケイ素も共有結合の結晶の1つです。

下に共有結合の結晶として有名なものを挙げておきます。

●ダイヤモンドC
C原子の4個の価電子が次々に4個の他のC原子と共有結合して
正四面体状に次々と結合した立体構造を持つのです。
●黒鉛C
C原子の4個の価電子のうち3個が次々に他のC原子と共有結合して
正六角形の網目状平面構造をつくり、それが重なり合っています。
共有結合に使われていない残りの価電子は結晶内を動くことが可能なため、
黒鉛は電気伝導性があります。
(多分この2つは教科書にも載っているでしょう。)
●ケイ素Si
●炭化ケイ素SiC
●二酸化ケイ素SiO2

私の先生曰く、これだけ覚えていればいいそうです。
共有結合の結晶は特徴と例を覚えておけば大丈夫ですよ。
頑張って下さいね♪

●分子結晶
分子からなる物質の結晶。
●共有結合の結晶
結晶をつくっている原子が共有結合で結びつき、
立体的に規則正しく配列した固体。
結晶全体を1つの大きな分子(巨大分子)とみることもできる。

堅苦しい説明で言うと、こうなりますね(^^;
確かにこの2つの違いは文章で説明されても分かりにくいと思います。

>共有結合の結晶は原子で出来ている
先ほども書いたように「原子で出来ている」わけではなく、
「原子が共有結合で結びついて配列」しているのです。
ですから二酸化ケイ素Si...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q∫[2、∞] dx/logx の発散・収束の判定

∫[2~∞]のdx/logxの発散・収束はどのようにしてわかるのでしょうか?
その判断の仕方と、答えを教えて下さい。

Aベストアンサー

まず広義積分の基本を復習しましょう。
今回のような範囲での積分は本来は定義されないので、普通は
  ∫[2~∞]{1/log(x)}dx = lim[t→∞]{∫[2~t]{1/log(x)}dx}
と極限を用いて定義します。
定積分を計算した後、右辺の極限が存在すれば収束、存在しなければ発散です。

ですが今回、定積分の計算も簡単にはできないので、題意の積分を下から評価します。

x≧2において常に
  0 < 1/(x*log(x)) < 1/log(x)
より
  ∫[2~∞]{1/(x*log(x))}dx < ∫[2~∞]{1/log(x)}dx

左辺の積分は
  ∫{1/(x*log(x))}dx = log(log(x)) +C

と実行できます。
左辺の定積分を計算してもらえばわかると思いますが、左辺は正の無限大に発散します。
よって題意の積分が下から評価できて発散することがわかったので、∫[2~∞]{1/log(x)}dxは∞に発散とわかります。

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

QA・B=B・AならばAの固有ベクトルはBの固有ベクトルである

A,Bをそれぞれn次正方行列とする
命題1:
「A・B=B・AのときAの固有ベクトルはBの固有ベクトルである」
これは反証がすぐに得られるので偽である
命題2:
「A・B=B・AでありAの任意の固有値に対する固有ベクトル空間が1次元のときAの固有ベクトルはBの固有ベクトルである」
kony0氏の証明より
vをAの固有ベクトルとしたときaを適当な複素数としてA・v=a・v
一方A・(B・v)=(A・B)・v=B・(A・v)=B・(a・v)=a・(B・v)
従ってB・vはAの固有値aの1次元固有ベクトル空間に含まれるから
適当な複素数bが存在してB・v=b・v

命題1に代わる真の命題があれば証明付きで教えてください

Aベストアンサー

元の表記は、
「二つのエルミート行列が同一のユニタリー変換によって対角化される
ことの必要十分条件は、それらが可換であることである。」
で、質問に沿うように私が書き換えました。

> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルとBの固有ベクトルを共通にとることができる。」
> 意味は
> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルであってBの固有ベクトルであるものが存在する」
> ですか?

このあたり、誤解を招く言い方ですみません。
固有ベクトルは対角化したときのユニタリー行列の列ベクトルに
なっているのですから、同一のユニタリー変換で対角化されると
いうことは、同じ固有ベクトルの(こういう言い方がいいのかどうか)
セットが存在します。こういう意味なのですが、わかりますでしょうか。

> 「Aの固有値の数とAの固有ベクトル空間の次元」と
> 「Bの固有値の数とBの固有ベクトル空間の次元」に対する関わりは
> ないのですか?

A、Bとも、固有値の数はn、固有ベクトル空間の次元もnです。
固有値の数は、縮退(重根がある場合)していても数えています。

> もっと一般的に
> 「A・B=B・AならばλをAの任意の固有値としたときλを
> 固有値とするAの固有ベクトルであってBの固有ベクトルである
> ベクトルが存在する」
> は正しくないですか?

んー、そこは私にはわかりません。

昔、量子力学を勉強したのを復習しつつ書いていますので、
間違いがあるかもしれません。
一応「自身なし」としておきます。

元の表記は、
「二つのエルミート行列が同一のユニタリー変換によって対角化される
ことの必要十分条件は、それらが可換であることである。」
で、質問に沿うように私が書き換えました。

> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルとBの固有ベクトルを共通にとることができる。」
> 意味は
> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルであってBの固有ベクトルであるものが存在する」
> ですか?

このあたり、...続きを読む

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから


このQ&Aを見た人がよく見るQ&A