No.2ベストアンサー
- 回答日時:
次の計算が出来ればよいわけですよね。
∫[0←∞]exp(iωt)dt
これはf(z)=exp(iωz)とおき、f(z)の複素平面上で次のような経路に沿って積分することを考えればよいでしょう。
R>0として
1.z:0→R (実軸上での積分)
2.z:R→iR ("0"を中心とした半径Rの円周上を反時計回りに1/4周する線上での積分)
3.z:iR→0 (虚数軸上での積分)
exp(iωz)は複素平面上全ての点で正則ですので、1.2.3の経路を1周するとその積分値は"0"になります。
つまり、1.2.3のそれぞれの経路で積分した値をI1(R),I2(R),I3(R)とすると
I1(R)+I2(R)+I3R)=0
となります。
I1(R),I2(R),I3(R)はそれぞれ次のような式になります。
I1(R)=∫[0→R]exp(iωt)dt
I2(R)=∫[0→π/4]exp{iωR*exp(iθ)}*iexp(iθ)dθ
I3(R)=∫[R→0]exp(-ωt)*idt
ここでR→∞とすると
I1(R)→∫[0→∞]exp(iωt)dt
I3(R)→-i∫[0→∞]exp(-ωt)dt
となります。I2(R)はR→∞で"0"に収束します。(証明は面倒なのでご自分でご確認ください)
以上のことから
∫[0→∞]exp(iωt)dt-i∫[0→∞]exp(-ωt)dt=0
がわかり、後ろの積分は簡単に計算できると思います。
∫[-∞→0]-exp(iωt)dtについては上に上げた経路を虚数軸に対して対称にした経路で積分すると良いでしょう。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 フーリエ変換後の負の周波数成分の扱いについて 4 2022/09/03 10:18
- 物理学 フーリエ変換の振幅について 1 2022/09/04 08:56
- 数学 数学の質問です。 関数f(t)のフーリエ変換をF(ω)=∫[-∞→∞]f(t)exp(-iωt)dt 1 2023/07/29 01:08
- 数学 フーリエ変換、逆変換の「2π」の扱いについて 3 2022/10/07 08:31
- 数学 lim_{θ→π/2}(θ-π/2)f(θ) =lim_{θ→π/2}(θ-π/2)sinθ/cos 3 2022/04/13 00:33
- 数学 f(x)=1(0<x<1),0(それ以外)とするとき、 fのフーリエ変換とf×fのフーリエ変換を求め 3 2022/12/18 18:18
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 工学 以前、線形代数からフーリエ級数展開を導く上で 式v=(v, e1)e1+(v, e2)e2+…+(v 6 2022/06/29 17:24
- 数学 sinA+sinBは、A=(α+β),B=(α-β)と置き換えて sin(α+β)=sinαcosβ 2 2022/08/23 08:06
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
歳とったな〜〜と思ったことは?
歳とったな〜〜〜、老いたな〜〜と思った具体的な瞬間はありますか?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
AIツールの活用方法を教えて
みなさんは普段どのような場面でAIツール(ChatGPTなど)を活用していますか?
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
フーリエ変換について質問です。
数学
-
フーリエ級数の問題で、f(x)は関数|x|(-π<x<π)で同期2πで
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
0の積分
-
e^(-x^2)の積分
-
exp(ikx)の積分
-
1/x は0から1の範囲で積分でき...
-
高校の数学で積分できない関数
-
積分の問題
-
定積分=0という場合、積分され...
-
∬1/√(x^2+y^2)dxdy を求めよ。
-
重積分の意味
-
積分のパソコン上のの表し方...
-
積分の問題です ∫sinxcosxdxを...
-
微積の問題です
-
積分においてxはtに無関係だか...
-
2乗可積分関数とは何でしょうか?
-
不定積分∫log(1+x)/x dxが分か...
-
有限までのガウス積分
-
置換積分と部分積分の使い分け...
-
cosx/xの積分の値について
おすすめ情報