非常にわかりにくい質問だと思いますが、ご容赦ください。∫f(x)dxという式があったとします。これは、積分の成り立ちから考えて、dxという記号が必要なのかどうかずっと疑問なのです。
積分の成り立ちはhttp://izumi-math.jp/sanae/MathTopic/sekibun/sek …のサイトを見て理解しました。
dxだけなら意味を持たないというのなら理解できます。∫dxがひとつのセットで積分という行為をするという風に捉えられるからです。でもdx単体でも意味を持ちますよね。でもこの成り立ちから考えて勝手にdxに意味を持たせていいのでしょうか。f(x)dxが微小面積で∫を作用させることによって足し合わせるという図のイメージはできますが、数式の上でどうしてそういう風なイメージになるのか理解できません。数学の得意な方、よろしくお願いします。
No.8ベストアンサー
- 回答日時:
そもそも積分とは何か,といえば,「細切れを足したもの」が積分です.
積分を計算したければ,細切れを足す計算を実行すれば(そして,その計算が実行可能なら),それでできます.
積分とは何かを説明するにも,積分を計算するにも,「微分の逆」は本来は出てきません.
積分は微分とは無関係に定義されるものです.
ライプニッツの記法は,この積分の定義を忠実に書き取ったものになっています.
「細切れを足す」以上,足されるべき個々の「細切れ」が何かを明らかにする必要があり,「f(x) に dx を掛ける」という操作を式の中に書くのは当然です.
ところが,微積分学の基本定理の発見によって,(1変数の場合は)わざわざ細切れを足さなくても「微分の逆」を使えばうまく積分を計算できるという「裏技」(←説明のために批判を恐れずあえてこう書きます)が編み出されたのです.
「積分は微分の逆」という標語は,「結果的に成り立つ事実」「計算のための便利な公式」という程度に認識すべきで,「積分とはそういうものである」と解釈すべきではありません.
高校数学カリキュラムで原始関数を使って積分を導入しているのは,「細切れを足すのを高校生にきちんと説明するのは困難だから」という消極的な理由による「方便」です.こういう高校数学の方便としての積分の見方は,大学で微積分学を学び始める段階でリセットすべきものです.
========
ところで,こうして積分の本来の意味とライプニッツの記法を見直してみると,∫ という記号はあくまで「足す」という意味で,「微分の逆をせよ」という意味は込められていないことに気づきます.その意味で,「∫ を微分の逆の作用素とみなして, dx を書かない」というのは,新たな記法の提案としても無理があるでしょう(∫ と dx のセットで「微分の逆」と説明するのなら,本来の意味とは異なるとはいえ,結果的につじつまが合うので,高校数学の方便として通用します).
1変数に限定して,たとえば I[f(x)] で f(x) の原始関数を表すとか,dx に相当する記号を使わない積分の記法を考案するのは自由ですし,そういう試みは過去にあったかもしれません.でも,そのような記法に,すでに定着したライプニッツの記法と比べて「dx を書く手間が省ける」以上のアドバンテージがあるとは思えず,提案してもたぶん流行らないでしょう.
No.7
- 回答日時:
「微小距離」が出てくるのは、グラフを使って考えるからでしょう。
積分変数は、物理学的に距離として測られるものに限りません。
積分を図示して説明するときに、被積分関数のグラフを描くと、
積分は面積に、dx は x 軸上の微小距離に対応するだけです。
積分そのものが面積な訳ではないし、dx 自体が微小距離でもない。
単なる例え話であって、積分の定義は数式だけで行えます。
確かに面積だけではないですね。では、微小範囲の変数とその関数の掛け合わせたもののある領域内での足し合わせであると考えたらいいんですね。
No.5
- 回答日時:
別に「微小距離」に限定しているわけではありません.
ANo.3様がおっしゃっているように∫は「和」であり「微小なものを足し集める」という意味で,たとえば物体の質量mを考えるとき,質量は物体を細切れにしたときの各微小素片の質量dmを足し集めたものであるから
m = ∫dm.
で,各微小素片の質量dmは密度ρと各微小素片の体積dVとの積なので
dm = ρ dV
したがって
m = ∫dm = ∫ρ dV.
この式の最右辺で,もしdVがなければ,物理的意味は通りません.
> ∫を使って微分の逆作用をするという考え方のみでいい気がします。
そもそも,「積分が微分の逆演算」という考え方が素直に通用するのは1次元の積分だけです.
(リーマン)積分の定義自体は上述した「細切れを足し集める」というものです.で,1次元の積分の場合,積分区間の上限を変数にしてみたら微分と逆演算になったというだけです:
d/dx ∫[c,x] f(t) dt = f(x). (微積分学の基本定理)
詳しいご回答ありがとうございます。なるほど、そもそも微分と積分の関係がおかしかったのですね。一次元の場合のみに成り立つ偶然できたものなのですね。では、この足し合わせという概念が基本にあって微分の逆作用が積分であるという関係が必ずしも成り立つわけではないということでいいんですか?
No.4
- 回答日時:
#3さんの解答と重複しますが,なんで,質問者さんはそこまでわかっているのに
『「 f(x) かける dx」 が長方形の面積で,∫ は「合計せよ」という宣言』
という説明を受け入れられないの? と,逆に不思議でなりません.
∫ と dx を使う積分の記法を考案したのはライプニッツです.
ライプニッツは同時に,dx と dy を使う微分法の記法も提唱しています.この時点で微積分学の基本定理は確立されていました.ライプニッツの記法の優れたところは,dx, dy という記号を広く用いることで微積分の記法に一貫性を持たせたことです.
高校生でもわかる例を挙げれば,「置換積分の公式がものすごくわかりやすく書ける」というのは,ライプニッツの記法のご利益のひとつといえるでしょう.
重積分や線積分など,より高度な微積分の理論を学ぶと,dx の有用性がもっとよくわかると思います.
ところで,微分の記法については,dx, dy を使うライプニッツの記法のほかに,f'(x) のように ' を使うラグランジュの記法,微分演算子 D を使うオイラーの記法もあり,さらに物理では y の上にドットをつけたり(ニュートンの記法) f の右下に x と書いたり,さまざまな記法が使われています.
積分についても,同じように,dx に相当する記号を使わない積分の記法が考案されて普及する可能性はあったかもしれません.実際はそうならずにライプニッツの記法が定着したのは,やはり,微積分の記法の一貫性という利点が広く認識されたからではないでしょうか.
ご解答ありがとうございます。面積の値は微分の逆作用するという行為で可能であると納得できています。ですが、今回のURLの説明のように積分という行為の成り立ちには微小距離という概念を使っていない気がします。わかりにくい質問でごめんなさい。
No.3
- 回答日時:
「縦の長さがf(x)、横の長さがdx」となっている長方形の
面積は、f(x)×dxなので、dxには確固とした意味があり、
∫f(x)dxは、それら多数の長方形の面積を足し合わせたもの
という意味になります。
∫という記号は、「和」を意味するsumという単語の最初の文字s
を縦に伸ばしたものです。
確かにその通りなのですが、私はそれは言葉として理解しているだけで、あるいは図としても理解しているだけです。∫を使って微分の逆作用をするという考え方のみでいい気がします。なぜ、ひょっこりとdxは微小距離って概念を数式を構成する上でなぜ持ち出してきたのかよくわからないんです。説明がうまくできなくて申し訳ありません。私はこういうものだと理解するしかないのが大変気持ち悪いんです。
No.1
- 回答日時:
すみません、
的を得た答えではないかもしれませんが、
参照URLにある通り、dxは微小な長さとして存在しているわけですから成り立ちの過程でもdxは意味を持っています。
底辺がdx、高さがf(x)ですから。
また∫f(x)dxのdxがないと、何について積分するのかが分からないという問題もあります。
f(x)という関数の中にもx以外の文字が入ることも多いわけですから、今はxについて積分してますよ、と宣言するためには必須です。
お答えありがとうございます。
(また∫f(x)dxのdxがないと、何について積分するのかが分からないという問題もあります。
f(x)という関数の中にもx以外の文字が入ることも多いわけですから、今はxについて積分してますよ、と宣言するためには必須です)確かにそうでした。そういった意味ではdxは必要ですが、dxが微小距離であるという物理的意味を持たせていいのかなと思います。f(x)dxを積分範囲で合計せよという意味も理解できます。ただ、どうしても積分の成り立ちから考えてdxは単なる記号にすぎず、微小距離という物理的意味を持たせる意味がわかりません。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 積分と不等式 2 2023/01/26 21:52
- 高校 数学III 積分 数学IIIの積分でf(ax+b)の積分公式がありますが b=0の時どのように考えれ 4 2022/09/30 02:06
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 物理学 ポテンシャルが有限で不連続の時、右側の波動関数をφ1(x)、左側をφ2(x)とする。境界条件の「波動 2 2023/06/04 13:53
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 数学 複素関数で分からない問題があります。 ∫[0->π]1/(1+sin^2x)dx という積分を考える 5 2022/12/24 22:14
- 数学 多変数関数の微分とテイラー展開について 5 2022/04/24 16:55
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 修正して頂いた画像を使用させていただき改めて質問させて頂きます。 画像において、直接fとgのx軸の点 9 2022/08/23 19:17
- 数学 (1+x^2)y'=1 の微分で教えて下さい 2 2022/08/30 10:23
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
これが怖いの自分だけ?というものありますか?
人によって怖いもの(恐怖症)ありませんか? 怖いものには、怖くなったきっかけやエピソードがあって聞いてみるとそんな感覚もあるのかと新しい発見があって面白いです。
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
積分の数式を声に出して読むとき、どう読みますか?
数学
-
∫(インテグラル)に続く数式の読み方
数学
-
積分の読み方が分かりません
数学
-
-
4
dx/dy や∂x/∂y の読み方について
物理学
-
5
周曲線の積分記号の意味について
数学
-
6
シグマの記号の読み方
数学
-
7
定積分・不定積分の式の読み方
数学
-
8
1/(1-x)や1/(1+x)の積分形
数学
-
9
不定積分の計算で出た定数は捨てて良いのでしょうか
数学
-
10
【数学】 lim x→a ↑これってどう読むんですか? どういう意味ですか? lim h→0 とかも
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^(x^2)の積分に関して
-
積分の数式を声に出して読むと...
-
0の積分
-
e^(-x^2)の積分
-
積分の問題
-
1/x は0から1の範囲で積分でき...
-
exp(ikx)の積分
-
e^(ax)の微分と積分
-
高校の数学で積分できない関数
-
定積分=0という場合、積分され...
-
積分においてxはtに無関係だか...
-
置換積分と部分積分の使い分け...
-
積分のパソコン上のの表し方...
-
積分 e^sinx
-
y=1/√xの積分を教えてください
-
2乗可積分関数とは何でしょうか?
-
不定積分∫log(1+x)/x dxが分か...
-
∬1/√(x^2+y^2)dxdy を求めよ。
-
cosx/xの積分の値について
-
exp(e^x)の微分,積分について
おすすめ情報