
No.1ベストアンサー
- 回答日時:
(1)
S:{(x,y,z)|z=x^2+y^2≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S1=∬[S] dS
=∬D √{1+(z_x)^2+(z_y)^2} dxdy
=∬D √{1+4x^2+4y^2} dxdy
x=rcosθ, y=rsinθとおくと
z=r^2≦4
0≦r≦2,0≦θ≦2π
D → E:{(r,θ)|0≦r≦2, 0≦θ≦2π}
√{1+4x^2+4y^2} dxdy=√(1+4r^2) rdrdθ
であるから
S1=∬[E} r√(1+4r^2) drdθ
=∫[θ:0→2π] dθ∫[r:0→2] r√(1+4r^2) dr
=2π[(2/3)(1/8)(1+4r^2)^(3/2)][r:0→2]
={17(√17)-1}π/6 ←(答え)
(2)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S2=∬[S] φdS
=∬[D} z√{1+(z_x)^2+(z_y)^2}dxdy
=∬[D] (x^2+y^2)√(1+4x^2+4y^2)dxdy
x=rcosθ, y=rsinθとおけば
(x^2+y^2)√(1+4x^2+4y^2)dxdy
=(r^2)√(1+4r^2) rdrdθ=(r^3)√(1+4r^2)drdθ
D → E:{(r,θ)|0≦r≦2,0≦θ≦2π}
S2=∬[E] (r^3)√(1+4r^2)drdθ
=∫[θ:0→2π] dθ∫[r:0→2](r^3)√(1+4r^2)dr
=2π∫[r:0→2](r^3)√(1+4r^2)dr
=2π[(1/120)(6r^2-1)(1+4r^2)^(3/2)][r:0→2]
=(391(√17)+1)π/60 ←(答え)
(3)
S:{(x,y,z)|z=x^2+y^2,z≦4}
D:{(x,y)|x^2+y^2≦4}
z=x^2+y^2
z_x=2x, z_y=2y
S3=∬[S] A↑・n↑dS
=∬[S] (y,-x,z^2)・(-2x,-2y,1)/√(1+4x^2+4y^2) dS
=∬[D] (-2xy+2xy+x^2+y^2)dxdy
=∬[D] (x^2+y^2)dxdy
x=rcosθ, y=rsinθとおくと
D → E:{r,θ)|0≦r≦2,0≦θ≦2π}
S3=∬[E] (r^2) rdrdθ
=∫[θ:0→2π] dθ∫[r:0→2] (r^3)dr
=2π[(1/4)r^4][r:0→2]
=8π ←(答え)
No.2
- 回答日時:
雑談:
同じように「面積分」と呼んでしまうが、
スカラーを積分するときは、dS がスカラー |d(x,y)|、
ベクトルを積分するときは、dS がベクトル d(x,y) で、
積 A dS が内積なんだよねえ。
やや用語が混乱ぎみではあるのだけれど、
物理でよく使うものに簡潔な名前を与えた結果、
こうなってしまっている。しかたがないやね。
そこの定義を確認して、頭を整理しとけば、
積分計算自体は、粛々と処理するだけ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ベクトル解析 ガウスの定理 問題 (1,0,0)、(0,1,0)、(0,0,1)、(0,0,0)を頂 7 2023/07/18 21:43
- 数学 大学数学の微積分の問題です。 曲面√x+√y+√z=1と3つの座標平面x=0,y=0,z=0で囲まれ 1 2022/07/05 13:49
- 数学 重積分で曲面間の体積を求める問題 3 2023/05/06 15:30
- 数学 大学数学の微積分の問題です。 曲線 y^2=x(logx)^2 x>0 y^2=0 x=0 のループ 1 2022/07/05 13:47
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 積分の計算にてこづっています。2曲線の面積を求める問題なのですが [-1/2cos2x+cosx]上 4 2022/06/25 12:55
- 予備校・塾・家庭教師 教えてください(>人<;) 2つ目の質問が理解できなくて困ってます! 2曲線の囲まれた部分の面積を求 2 2022/11/12 07:08
- 薬学 薬学部 3 2022/12/19 00:02
- 数学 数学『積分』 2つの曲線の間の面積 公式は 「y=f(x)−y=g(x)」 ここでいう曲線は直線も入 3 2023/03/25 00:13
- 薬学 薬学部 2 2022/12/17 16:33
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「ノルム、絶対値、長さ」の違...
-
行列とベクトルの表記の仕方に...
-
内積の式から
-
空間のベクトルで、法線ベクト...
-
座標系の奥(手前)方向の書き方
-
「任意」ってどういう意味?
-
零ベクトル
-
2つに直交する単位ベクトル
-
微積分の記号δ、d、Δ、∂の違い
-
線形代数 部分空間
-
【行列】列ベクトル、行ベクト...
-
平行四辺形ABCDがある時ABベク...
-
スカラー場.ベクトル場のイメ...
-
ベクトルの一次独立
-
内積つまりinner product
-
外積の記号について 外積の記号...
-
ベクトルの大きさの書き方が||x↑||
-
三次元空間内の2つのベクトルに...
-
空間における単位上半球面 S∶x^...
-
高校数学の範囲外の知識は大学...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「ノルム、絶対値、長さ」の違...
-
微積分の記号δ、d、Δ、∂の違い
-
「任意」ってどういう意味?
-
n次元ベクトルの外積の定義
-
行列とベクトルの表記の仕方に...
-
座標系の奥(手前)方向の書き方
-
平面の交線の方程式
-
高校数学の範囲外の知識は大学...
-
線積分、面積分とは何?
-
ベクトルについて
-
一次独立だけど、基底にならな...
-
複素数の絶対値の性質について
-
球面と直線の交点
-
2つに直交する単位ベクトル
-
一本のベクトルに直交するベク...
-
ベクトルの大きさの書き方が||x↑||
-
行列式が1とはどういう意味です...
-
なぜ2乗するのか
-
det(A)≠0 の必要十分条件を教え...
-
縦ベクトルと横ベクトルの違い...
おすすめ情報