
No.1ベストアンサー
- 回答日時:
五角形をx個、六角形をy個とすると面の数はx+y、辺の数は(5x+6y)/2となります。
するとオイラーの公式より点の個数nはn=3/2x+2y+2となります。一方、多面体の各頂点では3つ以上の面が会いますので頂点の個数は(多角形の頂点の数5x+6yは三重以上重複しているので)(5x+6y)/3以下になります。
よって 3/2x+2y+2<=(5x+6y)/3 を解けば12<=xとなります。
また各頂点で会う面が丁度3個の時には等号がなりたつので丁度12個になります。
ところでmakoto05さんはどういう事情で質問されるのでしょうか。
学生さんが自分で考えもせずに課題の回答を聞いているのであれば正直答えたくないですし、それなりの理由があれば他の質問にも回答しようという気になります。
ご丁寧にどうもありがとうございましたm(__)m
自分は学生でこの冬に何十という数のレポを出されました。その中で、参考文献を調べ、自分で考えても問題の意味や答え方が分からない問題を質問させてもらっています。提出期限が重なったので大量に質問してしまい、誤解を招くようなことをしてしまって申し訳ありませんでしたm(__)m
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報