
こんにちは。早速質問に入りますが、
円同士が接していて、その点での2つの円の共通接線を求めるときなのですが、僕は接点の座標を求め、それを使って接線を求める方法で解いていました。
ですが、入試問題の(確か中央大学のセンター併用方式だったと思いますが)をやっていて、回答を見たところ、それぞれの円の方程式を引くだけで共通接線が求まっていました。
具体的には
(x-a)^2 + (y-b)^2 =b^2
(x-A)^2 + (y-B)^2 =B^2
(ただし、A>a,B>b)
が接しているとき、接点も求めずにそのまま
(x-A)^2 - (x-a)^2 + (y-B)^2 - (y-b)^2 = B^2 - b^2
2x(A-a) + 2y(B-b) - A^2 + a^2 = 0
という方法を使っていました。
この方法が可能な理由が分からずに今回質問させていただくことにしたわけですが、この方法を使えば確かに接点を通る直線の方程式が求められることは理解できますが、なぜ共通接線の方程式になるのでしょうか?
この方法を使えば接線が求まることはだいたい想像がついたのですが、接点を通る他の直線ではなく、何故接線になるのかを知りたいのです。
よろしくお願いします。
No.1ベストアンサー
- 回答日時:
>2x(A-a) + 2y(B-b) - A^2 + a^2 = 0
この式は、2円が交わる時の2円の共通の交点を通る直線の式です。
一般に
2つの曲線
f(x,y)=0,g(x,y)=0が交わる時、それらの全ての交点を通る曲線の式は
kf(x,y)+hg(x,y)=0 …(■)
であらわされます。
k,hを適当に選んで■が直線になるなら、2曲線の交点を通る直線になります。
質問のケースでは、2円が接していますのでそれらの2交点を通る共通の直線は2交点が近づいて一点になった極限として共通の接線になるわけです。
今回のようにx軸に接する2円が互いに接する場合の共通接線は、2円の差から出る直線の他に、2円の上側に接する接線とx軸の2本があり、合計3本あります。なので、全ての共通接線が求まるわけではありません。
2円の共通の接点を通る接線だけ■の接線なのです。
別にx軸に接する2円の条件をはずした
(x-a)^2+(y-b)^2=r^2
(x-A)^2+(y-B)^2=R^2
が接する時は、その共有接点を通る共通接線は
両円の式の差をとった(■の式でk=1,h=-1と置いた場合)
2x(A-a)+2y(B-b)^2=r^2-R^2
となります。
より一般的に、2円の交点を通る共通の直線の式として覚えておいた方がいいでしょう。その特別なケースとして2円が接するとき、その接点を通る共通接線になるのだと覚えておいて下さい。
No.2
- 回答日時:
二つの円をC1、C2と呼ぶことにして
C1:(x-a)^2 + (y-b)^2 =b^2
C2:(x-A)^2 + (y-B)^2 =B^2
を少し変形すると
f(x,y)=(x-a)^2 + (y-b)^2 -b^2=0
g(x,y)=(x-A)^2 + (y-B)^2 -B^2=0
となるので
f(x,y)=0となるx,yは円C1をg(x,y)=0となるx,yは円C2を表します。
ここで
f(x,y)+k g(x,y)=0 (*)
という式を作ると、これはkの値によらずf(x,y)=g(x,y)=0となる点を通ります。
すなわちこの(*)と言う式は
(C1とC2の円上にある)=(C1とC2の接点を通る曲線、又は直線)
を表します。
(*)という式がx^2,y^2の項を含まなければC1とC2の接点を通る直線を表すので、適当にkの値を調整すると(今の場合k=-1)
f(x,y)-g(x,y)=0
{(x-a)^2 + (y-b)^2 -b^2}-{(x-A)^2 + (y-B)^2 -B^2}=0
2x(A-a) + 2y(B-b) - A^2 + a^2 = 0
これは結局C1とC2の接点を通る直線ですが、C1とC2の接点が唯一つなので接線となっています。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 微分積分の接線についての問題がわからないです。 2 2023/01/08 13:54
- 数学 数II 図形と方程式 点(7,1)を通り、円x^2+y^2=25...①に接する直線は、 (ア)x+ 5 2023/07/01 23:33
- 数学 写真の図は中心(a,b)半径rの円とその円周上の(x1,y1)における接線lと円の中心とlを結ぶ任意 4 2023/08/08 16:20
- 数学 前にも質問したものでx^3+y^3=1を陰関数を使って、点(1、0)、接線の方程式を求めなさいという 1 2023/07/08 12:17
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 数学 【 数I 放物線と直線の共有点 】 問題 放物線y=x²+ax+bが点(1,1)を通り, 直線y=2 4 2022/07/18 09:57
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
高3 数学
-
常にf’’(x)>0とf’'(x)=0...
-
円の接線はなぜ接点を通る半径...
-
数学の問題です。
-
楕円の問題です。
-
行列・行列式が考えられたわけ...
-
数学(二次関数と接線)(誤りがあ...
-
数学 微分の問題です
-
微分方程式の問題です
-
複素関数の微分でも接戦という...
-
点(a,b)の存在範囲
-
エクセル2007曲線の接線と傾き...
-
接線の方程式
-
共通接線の長さ
-
△y/△xとdy/dxについて再考
-
至急お願いします y=sinxの点...
-
紙に描かれた曲線上の一点にお...
-
曲線y=xの3乗+3xの2乗-2につい...
-
微分法の接線の方程式、接点の座標
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
常にf’’(x)>0とf’'(x)=0...
-
曲線と点の最短距離の出し方
-
エクセル2007曲線の接線と傾き...
-
理解しがたい部分があります。...
-
「接する」の厳密な定義とは?
-
【数学】 接点が異なれば、接線...
-
3次関数と、直線が変曲点で接す...
-
行列・行列式が考えられたわけ...
-
x=tan(x)この方程式を解く方法...
-
(x-c)^2+y^2=c^2に直交する曲線...
-
y=x^3 の(0,0)における接線は
-
微分方程式の問題です
-
円: x^2+y^2-4x-2y+4=0と点
-
円の接線はなぜ接点を通る半径...
-
曲線y=xの3乗+3xの2乗-2につい...
-
曲率(と捩率)の符号は、数式...
-
y=e^xに対して点(0、a)から...
-
二次曲線の問題です。
-
回転した楕円の式
おすすめ情報