両親媒性分子がミセルを形成すると、両親媒性分子のエントロピーはSΔ<0となりますが、水分子のエントロピーがSΔ>0となる理由がイマイチよくわかりません

ミセル形成前の水分子の状態は
両親媒性分子が水分子に囲まれている=つまり水分子が凝集してる状態だからエントロピーが減少する?

ミセル形成した時の水分子の状態は
両親媒性分子を囲む必要が無いので自由に動ける=つまりエントロピー増加?

という考え方でいいのでしょうか・・・?


また、教科書の方なのですが、
「いったんミセルが形成されてしまうと、溶媒分子は(明らかにもっと大きな)かごを一個だけつくりさえすればよいことになる」
と書いてあり、意味がわかりません

こちらも教えてください


どうかよろしくお願いします!

このQ&Aに関連する最新のQ&A

A 回答 (1件)

そもそも,界面活性剤が溶解する過程は,水のエントロピーが減少する過程だということはいいですかね.これは疎水鎖の周りの水が構造化し,いわゆる iceberg を作るってことと対応しています.


ミセル作ればその iceberg は解放されるので,水にとってはエントロピーは増加する方向でいいんです.

この回答への補足

回答有難う御座いました

「いったんミセルが形成されてしまうと、溶媒分子は(明らかにもっと大きな)かごを一個だけつくりさえすればよいことになる」
こちらの意味も教えていただけると嬉しいです^^

補足日時:2009/11/29 00:28
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q臨界ミセル濃度(cmc)

ミセルが出来始める活性剤の濃度を臨界ミセル濃度といいますが、塩(NaClやNaBr)を加えると、一般的にCMCは下がるようです。

この理由が、よくわかりません。
どなた様か、詳しく教えていただけませんか?
よろしくお願いします。

Aベストアンサー

親水条件で、cmcは大きく、疎水条件でcmcは小さくなることが基本にあると思ってください。

電解質が入るため、イオンが水和水を奪い、親水基から水がうばわれることと同じ状態になりますので、より低濃度で、親水基のための水不足になり、はやくミセル形成がおきることになります。要は疎水側に条件を振ったことと同じです。

参考で答えた、親水基、疎水基の関係と同じ方法で説明できるわけです。
ミセル形成自体はご存じだから、こんな説明で大丈夫ですよね(たぶん私よりも専門家でしょう)。

界面活性剤のラボに所属とのことですので、界面活性剤ハンドブックという本があると思うので、詳しくはそちらをご覧ください。cmcに影響を与える条件がいろいろ出ています。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=420755

Q極性は親水性、非極性は疎水性

レポートを書く為に若干あやふやな部分があるので質問をします。
教科書には『分子は似たものを溶かす』とありました。
即ち極性物質は極性物質を溶かし、非極性物質は非極性物質を溶かす。
したがって、極性物質である水は極性物質を溶かす。

極性物質が極性物質を溶かすのかは何となく分かります。
しかし非極性物質が非極性物質を溶かす理由がイマイチ分かりません。

あやふやなままレポートを書くのはいやなので、どうしてそうなるのか教えてください。

Aベストアンサー

いいとこに突っ込みますね。

溶ける前と溶けた後のことを考えて見ましょう。
無極性物質の例としてナフタレンでやってみましょう。

ナフタレンの固体中で、ナフタレン分子同士の間は分子間力と呼ばれる力でお互いが引き合い、その結果として結晶を作っています。
分子間力の起源は分子によって異なりますけど、ナフタレンのような芳香族分子だと、ファンデルワールス引力に加え、パイ-パイ相互作用、CH-パイ相互作用が考えられますが、ここでは詳細は良いのでとにかく引き合う力は大して強くない、ということだけ念頭においてください。

では、ナフタレンをベンゼンに溶かしてみましょう。
ベンゼンもナフタレンとだいたい同じ様な分子なので、引き合う力も同じようなもんです。
溶けたナフタレンはベンゼンの中でどのような状態になっているでしょうか。
まわりの溶媒分子であるベンゼンと相互作用しながら、ふわふわと漂っている感じです。
また、ベンゼン同士も大して強い力で引き合っておりません。

これは極性物質が水に溶ける場合とは大きく異なっていますね。
溶質分子間にはたいした相互作用はありません。
溶媒分子間にもたいした相互作用がみられません。
溶質・溶媒間も同様。
つまり、極性物質が水に溶けるときのように、”頑張って隙間にねじ込む”必要が(ほとんど)ないのです。

なので、ナフタレンをベンゼンに漬けて、ちょっと暖めてやれば、熱をもらって動きたがりになったナフタレン分子は、「どれ、周りのナフタレンから剥がれて、ベンゼンの中に漂いだそうかい」というくらいの適当な気持ちで溶け込んでいけるのです(実際にはあっためずとも室温くらいで溶けるはず)。
極端に溶媒ー溶質の相互作用を無視して言えば、液体をあっためたら蒸発するのと似てるかな。乱暴な言い方ですけどね。

熱力学の言葉で言えば、「エンタルピー的な変化が溶解の前後でさほど無い。一方、分子が溶解することでのエントロピー的な稼ぎがあるので、結果として溶けた方がハッピー。だから溶ける」といったとこかな。これ、No.1さんが言ってるのと同じです。

なお、無極性溶媒といってもいろいろあります。

ヘキサンなどのように、ほんとにほとんど何の相互作用も無い(ファンデルワールスはあるけど)、貧弱な溶媒もあれば(事実、このような相互作用の弱い溶媒中では、希薄溶液中の溶質は気相の孤立分子の性質に近づく)、溶質と強く相互作用するものもあります。

上で例に挙げたベンゼンなんてのは、実はかなり相互作用が強い分子です。ベンゼンとかトルエンは、無極性ではありますが、割と物を良く溶かしますし、カラムの溶媒に使っても、結構モノを流します。溶質との強い相互作用のためでしょう。
こういう、相互作用が効いてくると、上述したように「エンタルピーの変化はあんまり無い」とは必ずしもいえなくなります。

なお、無極性溶媒には極性物質は逆に溶けにくくなります。
たとえば、食塩をヘキサンに溶かすのは無理です。
これは、溶質(溶けてないから溶質とはいえないけど)分子間の強いクーロン相互作用、双極子相互作用などを切断するほどの、溶質ー溶媒間の相互作用が生じないためです。固体中での結合をあえて切断し、溶け込むだけのエネルギーの補填が、無極性溶媒ではできないのですね。
油と

いいとこに突っ込みますね。

溶ける前と溶けた後のことを考えて見ましょう。
無極性物質の例としてナフタレンでやってみましょう。

ナフタレンの固体中で、ナフタレン分子同士の間は分子間力と呼ばれる力でお互いが引き合い、その結果として結晶を作っています。
分子間力の起源は分子によって異なりますけど、ナフタレンのような芳香族分子だと、ファンデルワールス引力に加え、パイ-パイ相互作用、CH-パイ相互作用が考えられますが、ここでは詳細は良いのでとにかく引き合う力は大して強くない、という...続きを読む


人気Q&Aランキング

おすすめ情報