はじめまして。
物理学中でよくわからないなと思っていたんですが、
まず、例をあげます
「半径r、密度ρ、長さlの液柱が角度θで傾いている底面の圧力は?」っていう問題があったとします。

P = F / A より、

F = ρ πr(二乗)l cos θってなりますよね?

この 「l cos θ」ってのが何でかよくわからないんです。高さなんだなってのはわかるんですけど・・・・

このQ&Aに関連する最新のQ&A

A 回答 (4件)

これは「l cos θ」で分けるのではなくて、


F = ρ・(πr^2・l)・cos θ
となるのだと思います。この「πr^2・l」は液柱の体積になります。
そして密度に体積を掛けたρ・(πr^2・l)が液柱が垂直に立っている時に底面にかかる力であり、それにcos θを掛けた値が、角度θ傾けた時の鉛直方向成分となります。
    • good
    • 0
この回答へのお礼

ありがとうございます。では、もし sin θになるとしたらどんな条件のときなのでしょうか?

お礼日時:2003/08/02 10:49

#1ですが


hornisseさんは回答に書いてある内容を自分で考えた上で、次の質問をしていますか。参考URLは開いてみられましたか。回答に対する検討の見られないままの次の質問は回答者にとって不愉快です。

長くなったので分かりにくくなっているかも知れませんので、これまでの話の流れをもう一度たどると

(1)「l cos θ」がわからない
  ↓
(2) 式は「l cos θ」で分けるのではなく、鉛直方向の力「ρ・(πr^2・l)」に「cos θ」を掛けた値が、底面に対して垂直方向の力成分である、という意味
  ↓
(3) sin θになるとしたらどんな条件のとき?
  Vx=Vゼロcosθはx方向の成分では?
  cosθの意味がよくわからない
  ↓
(4) それは[No.3 図1]の場合であり、[No.3 図2]のようにθを考えた場合は、斜面に垂直方向(Y方向)の成分D は C・cosθとなります
  ↓
(5)[No.3 図1]ではなく、[No.4 お礼欄の図]だった
  もう一度説明してほしい

ということになります。

つまり、(3)で「Vx=Vゼロcosθはx方向の成分」ということがお分かりのようだったので、私は(4)で、それはθの取り方の違いで、θを[No.3 図2]のように取るとcosθを掛けたものがY方向の成分になりますよ、という説明をしたのです。

ですから、(5)でhornisseさんがθの取り方が違っていたというのならば、「Vx=Vゼロcosθはx方向の成分」というのも当然間違いになるので、そこで私が(4)でD = C・cosθと書いていることについて、なぜそうなるかを考えてみて欲しかったのです。

そういうわけで、私からの回答は今回で最後とさせていただきます。

最後に一つだけ回答・補足しておきます。「鉛直線から角度θだけ傾いた」というのは[No.4 お礼欄の図]という考え方で結構です。それは[No.3 図2]で言えば、力Fと力Aのなす角がθということです。その場合になぜD = C・cosθ、B = C・sinθ となるかは、ご自分で考えてみて下さい。三角関数が不確かなのであれば、先程2つめに紹介したページの「三角関数の覚え方」などを見て、sinとcosそれぞれの場合の角度と辺の関係を再確認して下さい。
    • good
    • 0

#1です。


>速度成分の分解でVx=Vゼロcosθはx方向の成分でした。
それはX-Y座標の原点からVというベクトルが出ていて、そのベクトルとX軸のなす角がθの場合の話ですね。下の図を図1とします。
  Y
  ↑     
Vy │・・・・┐V0
  │   /・
  │  / ・
  │ /  ・
  │/θ  ・
 ─┼─────→ X
  │    Vx

とりあえず下記ページの最初の図を見て下さい。それを図2とします。
http://www.e-t.ed.jp/edotori4491/tikasyam.htm

私は図2の斜面にある四角い物体をメスシリンダーのような水の入った液柱に置き換えたものをイメージしました。見えにくいでしょうが、斜面に垂直上方に働く力がA、あとは反時計回りにB~F、それから斜面の傾斜角がθとなっています。
この場合、Cという力は斜面に垂直方向(Y方向)のDと水平方向(X方向)のBに分解されています。この時
 D = C・cosθ
 B = C・sinθ
になるのは分かりますか。図1のX-Y座標を回転させてX軸とB、Y軸とDを合わせると、θで示しているものが、図1ではX軸からの角度、図2ではY軸からの角度、という風に違うのが分かると思います。

もしそれでなぜsinθがcosθに変わるのか分からなければ、お手持ちの参考書か、三角関数に関するサイトを参考にして下さい。
http://www.dt.takuma-ct.ac.jp/~sawada/math/danwa …

「Vx=V0cosθ」という式は図1のような場合だと覚えておいて、あとはその問題に応じて作図して考えた方がいいですよ。

参考URL:http://www.e-t.ed.jp/edotori4491/tikasyam.htm,http://www.dt.takuma-ct.ac.jp/~sawada/math/danwa …
    • good
    • 0
この回答へのお礼

毎回ありがとうございます。

まず、根本的な間違いをしていました。
これは、「鉛直線から角度θだけ傾いた」となっておりますから、
  Y
  ↑     
Vy │ ・・・・ ┐V0
  │     /・
  │    / ・
  │θ /  ・
  │/    ・
 ─┼─────→ X
  │    Vx


ってことですよね?
説明が変わってきてしまうと思いますが、もうちょっとでわかりそうなんです。
よろしくお願いします

お礼日時:2003/08/02 18:32

#1です。


先程の文章に誤りがありました。最後の部分の
>それにcos θを掛けた値が、傾けた時の鉛直方向成分となります。
は、
それにcos θを掛けた値が、傾けた時の「底面に対して垂直方向の成分」となります。
の間違いです。

>もし sin θになるとしたらどんな条件のときなのでしょうか?
ちょっと意味が分かりづらいのですが、

ρ・(πr^2・l)・cos θ(底面に対して垂直方向の成分)に対してρ・(πr^2・l)・sin θは何を表しているのか

という御質問であれば、「底面に対して水平方向の成分」を表します。鉛直方向の力ρ・(πr^2・l)を、底面に垂直・水平の2方向に分解した図を書いてみられれば分かると思います。
またもし、

F = ρ・(πr^2・l)・cos θ(底面に対して垂直方向の成分)
= ρ・(πr^2・l)・sin θ(底面に対して水平方向の成分)になるのはどのような場合か

ということであれば、cos θ = sin θ = 1/√2 となる θ = 45°の時ということになります。
    • good
    • 0
この回答へのお礼

ありがとうございます。
ですが、「底面に対して垂直方向の成分」がイメージがわきません。
速度成分の分解でVx=Vゼロcosθはx方向の成分でした。
shiga3さまの話で言うと「底面に対して水平方向の成分」となると思うんですが.....

ここってペイントとかで画像送ってもらったりできないんですよねぇ。
困った。式中のcosθの意味がよくわかってないようです。

理解力がなく申し訳ございません

お礼日時:2003/08/02 13:39

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数学は苦手だけど、物理は得意って人は存在するの?

物理の参考書を見ると難しい数式で書かれてたりするので、数学が出来なくては物理は出来ないような気がします。
そこで疑問に思ったのですが、数学は苦手だけど物理が得意って人はいるのでしょうか?

Aベストアンサー

>数学は苦手だけど、物理は得意って人は存在するの?

世界中に沢山いると思います.かの相対論で有名なアルバート・アインシュタインも数学は苦手でした.相対論を構成して行く過程で数学の優秀な人に数学を教わったそうです.

物理の参考書に難しい数式が並んでいるのは,ほとんどが,後の人の付け加えです.数式は,物理現象を説明したり,再現性を確かめたりするために後から付け足すものです.

物理学は,数式が始めに有るのではなく,物理現象に対して数式を後から当てはめたものです.

数学が苦手でも物理学は出来ます.想像力と創造力とヒラメキがあればいいのです.それから,情熱と・・・.

物理学は,人間の想像からはじまり,観測し,その物理現象に数式を後から当てはめる作業なのです.

ですから,想像力が始めに無ければ,物理学は始まりません.その次に数学があるのです.

Qsinθ=θ-(θ^3/3!)+(θ^5/5!)-・・・=θ(1-(θ^2/6)+(θ^4/120)

sinθ=θ-(θ^3/3!)+(θ^5/5!)-・・・=θ(1-(θ^2/6)+(θ^4/120)-・・・)
この式より、θ=0.15radの場合の解が左辺と右辺でほぼ等しくなることを証明せよ。ただし、右辺は第3項(θ^5/5!)まで各項を数値で求め、その和を左辺と比較することとする。
この問題を詳しく教えていただきたいです。よろしくお願いします。

Aベストアンサー

テイラー展開を何次の項まで計算するか、という計算問題ですよね。
下記をご自分でも計算してください。

sin(0.15rad) = 0.15 - (0.15^3/3!) + (0.15^5/5!) = 0.15 - 0.0005625 + 0.000000632 = 0.149438132

関数電卓で計算すると
 sin(0.15 rad) = 0.14943813247

9桁目まで一致していますね。

関数電卓サイト
https://www.google.co.jp/search?q=%E9%96%A2%E6%95%B0%E9%9B%BB%E5%8D%93&oq=%E9%96%A

Q物理を理解するのに日本語は英語より不向ですか?(物理、英語が堪能な人に

物理を理解するのに日本語は英語より不向ですか?(物理、英語が堪能な人に質問です。)
昔、物理の授業中先生に、例として「直線上の一点」という表現、英語なら「above、on」の区別があるが日本語は「上」しかない。物理は日本語より英語の方が理解しやすいと言われました。その時は、なるほどと思ったのですが実際はどうなんでしょうか。

Aベストアンサー

私は30年前にアメリカに渡って今まで物理の研究を生業にして飯を食って来た者です。

日本人ならば日本語に決まっています。ただし、今の世の中、英語でスラスラ読み書き出来ないと物理の専門家になるのは無理でしょう。貴方の昔の先生は何処の国から来た方か存じませんが、日本人なら「直線より上の一点」はaboveに、「直線上の一点」はonにそれぞれ対応していることぐらい誰にでも判ることですね。このように、「より」の一言があるかないかで、何の曖昧さもなしに区別が出来ます。

また、日本人が学問をするのにカタカナはいただけません。外国語を一旦漢字に直すと、その意味は、何となくでも良いという段階も含めるならば、誰にでも判るようになります。例えばエレクトロンじゃあ、その言葉はうちの婆さんには何のことだか見当がつかないが、電子なら多分それが電気に関係がある言葉であることぐらいは判ると言っていました。また、マニフェストじゃ判らんが、公約だったら判るとも言っていました。このように、漢字には表音語にはない意味の透明性があり、その結果、その言葉で意味される概念を専門家達が独占してしまうことを妨げる、大変民主的な利点があるのです。ですから、日本の専門家には外国語で表現されている概念を出来るだけ透明な漢字に直して、知的貴族の出現を許さない民主的な文化を作り上げる義務があるのです。しかし、どうも近年の専門家達はこの義務を履行していないようです。もちろん、訳語には拙劣な訳と透明な訳がありますが、それこそ、どう言う訳をするかで、その専門家の能力が試されているわけです。

また、カタカナ語は完全に元の発音と違っておりますので、それは外国語ではなく立派な日本語であると考えるべきです。カリフォルニア、マクドナルド、ボストン、オースティン、、、どれもこれもそのままでは元の外国人には通じません。私の経験でも、ソリトンとかパーターベーションとか電算機のバグという物理で頻繁につかう専門言葉をアメリカ人の前でカタカナのままに発音して全然通じなかったことを経験しております。ということは、カタカナで書かれた専門用語は、漢字と同じレベルの翻訳語と言うことになります。ところが、これは漢字で書かれていない翻訳語なので、漢字で書かれていない分だけ、その文字をいくら眺めても何を意味するか何の印象も湧いて来ない不透明で拙劣な訳語とみなすべきです。

そのことに関連して、蛇足ですが、哲学者はどうしてそんなにも言葉に対する感覚がないのかと、何時も感心させられております。もう一晩寝れば誰にでもその意味の見当が付くような、もっと透明な命名が出来るはずなのに、当為、定言的命法、仮言的命法、格率、措定、投企、所与、実存、形而上学、止揚、徴表、帰納、演繹、、、あるはあるは。漢字を見ていても何の印象も湧いて来ない。哲学って、そんなに素人に判ってもらっちゃ困る学問なんですかね。そもそも「哲学」と言う漢字を見せられて、それを初めて見た人は何をやる学問であるのか全く見当がつかない。西周とか言う人の造語だそうですが、良くもまあこんなに意味の不透明な造語を作ったものだと感心しております。多分、哲学をやる人間は、どうせ素人を煙に巻くことが生き甲斐で生きている連中だからという理由で、深慮遠謀のある命名法だったのでしょうかね。事実、その後の日本の哲学者達の言葉の命名法は、この西周さんの予想通りになって来たようですから。物理だけは、こんな拙劣な漢字文字やカタカナ文字などの手抜きをした意味不透明な訳語にしないで、誰にでも見ただけで何となくでも良いから見当がつく漢字を使って頂きたいですね。

序でですが、日本語がどれだけ物理を表現するのに適した言葉であるのかの具体的な例として、朝永振一郎の『量子力学』を挙げておきます。昔、この本について私の先生曰く「この本は危険な本である。量子力学は誰にでも出来るような物ではない。ところが、この本を読むと、量子力学が簡単に判ってしまった気になってしまうので、私も物理学者になろうと言う気を起こさせてしまう。それで、日本のどれだけの若者が進むべき道を誤ったことか。」勿論これは冗談ですが、こと程左様に、この本は、日本語が物理学を記述するのにどの国の言葉にも劣っていないことを示す具体的です。したがって、ある物理の本を日本語で読んで良く判らなかったら、それは日本語のせいではなく、その著者の物理の理解の程度の低さのせいであると考えるべきでしょう。

私は30年前にアメリカに渡って今まで物理の研究を生業にして飯を食って来た者です。

日本人ならば日本語に決まっています。ただし、今の世の中、英語でスラスラ読み書き出来ないと物理の専門家になるのは無理でしょう。貴方の昔の先生は何処の国から来た方か存じませんが、日本人なら「直線より上の一点」はaboveに、「直線上の一点」はonにそれぞれ対応していることぐらい誰にでも判ることですね。このように、「より」の一言があるかないかで、何の曖昧さもなしに区別が出来ます。

また、日本人が学問をする...続きを読む

Q写真の例題4.2の初期条件がθ(π/2ω)=θ0、v(π/2ω)=v0の場合について、θ(t)とv(

写真の例題4.2の初期条件がθ(π/2ω)=θ0、v(π/2ω)=v0の場合について、θ(t)とv(t)の式と振動周期Tを求めよ。
この問題を詳しく教えていただきたいです。お願いします。

Aベストアンサー

No.1です。「補足」を見ました。

ご質問は単に「一般式に初期条件を入れて、その条件下での変位、速度の式を作る」だけのことなので、一体何が分からないのか理解できません。

(1) 画像に書かれた初期条件の場合

一般式
 x(t)=Acosωt+Bsinωt
に t=0 を代入して
 x(0) = A = θ0
より
 x(t)=θ0*cosωt+Bsinωt
これを微分して
 v(t) = -θ0*ω*sinωt + B*ω*cosωt
t=0 のとき
 v(0) = B*ω = v0
より
 B = v0/ω

よって
 x(t)=θ0*cosωt+(B/ω)*sinωt
 v(t) = -θ0*ω*sinωt + v0*cosωt


(2) 質問文に書かれた初期条件の場合

一般式
 x(t)=Acosωt+Bsinωt
に t=π/2ω を代入して
 x(π/2ω) = Acos(π/2) + Bsin(π/2) = B = θ0
より
 x(t)=Acosωt+θ0*sinωt
これを微分して
 v(t) = -A*ω*sinωt + θ0*ω*cosωt
t=π/2ω のとき
 v(π/2ω ) = -A*ω*sin(π/2) + θ0*ω*cos(π/2) = -A*ω = v0
より
 A = -v0/ω

よって
 x(t) = -(v0/ω)*cosωt+θ0*sinωt
 v(t) = v0*sinωt + θ0*ω*cosωt


そもそも単振動の基本はきちんと勉強しましたか?

高校レベルならこちら。
http://wakariyasui.sakura.ne.jp/p/mech/tann/tannhuriko.html

大学レベルならこちら。
https://www.sit.ac.jp/user/konishi/JPN/L_Support/SupportPDF/SimplePendulum.pdf

これを学んだ上で、どこが分からないのか、何を知りたいのかを説明してください。

No.1です。「補足」を見ました。

ご質問は単に「一般式に初期条件を入れて、その条件下での変位、速度の式を作る」だけのことなので、一体何が分からないのか理解できません。

(1) 画像に書かれた初期条件の場合

一般式
 x(t)=Acosωt+Bsinωt
に t=0 を代入して
 x(0) = A = θ0
より
 x(t)=θ0*cosωt+Bsinωt
これを微分して
 v(t) = -θ0*ω*sinωt + B*ω*cosωt
t=0 のとき
 v(0) = B*ω = v0
より
 B = v0/ω

よって
 x(t)=θ0*cosωt+(B/ω)*sinωt
 v(t) = -θ0*ω*sinωt + v0*cosωt


(2) 質問文に書かれた初期...続きを読む

Q大学受験での物理で、微積を使わないでもいけますか? どういう人が微積物理をやるのでしょうか? 志望学

大学受験での物理で、微積を使わないでもいけますか?
どういう人が微積物理をやるのでしょうか?

志望学部は工学部です。
物理は今のところ参考書で独学で頑張りたいと思っています。

一応数Ⅲをやっているのでそこまで微積が苦手な訳ではないのですが。。。

Aベストアンサー

No. 2 の方の言うとおり、高校の物理では、微積を使わなくてもできることになっていると思いますが、使わないと、いちいちいろんなことを考えて式を立てりしなければなりません。それよりは、微積を使って考える方が簡単だと思います。

今、自分で微積を勉強しているようですから、物理も一緒にやってみれば、微積の意味、必要性などもよく分かって来るかもしれません。

Q下図のクーロン力Fを具体的に求めたいです。式はF=F1COS30°+F

下図のクーロン力Fを具体的に求めたいです。式はF=F1COS30°+F2COS60°を利用するのですが、この式と図との関係が良く分かりません。 教えて下さい。 よろしくお願いします。

Aベストアンサー

点Aの電荷に働く力は2つあります.
1つは点Bの電荷の影響による反発力F_1で,向きはB→Aの方向.
もう1つは点Cの電荷の影響による吸引力F_2で,向きはA→Cの方向.

求めたい力Fは点Aに働く力の合力のx成分です.
(B→Cの向きをxの正方向と考えています.)
従ってF_1とF_2をそれぞれx方向とy方向に分解して,
成分ごとに足し合わせればOKです.
質問文の間違いだと思いますが,結果は
F = F_1*cos60°+ F_2*cos60°
となるはずです.

Q高校物理を履修していない人でもできる電磁気の勉強法

理系の学部に通っている大学1年の者です。

10月から電磁気の授業が始まるので、それに備えて今から少し予習しておきたいと思うのですが、どのように勉強すればいいでしょうか。

大学の授業では高校で物理を履修した人と履修していない人で授業が分かれており、私は物理を履修していないので当然履修していない人用の授業を受けるのですが、ついていけるか心配です。

1学期に力学(これも電磁気と同様に物理を履修しているか否かで授業が分かれます)の授業があったのですが全然ついていけませんでした。
(物理を履修していない人用の授業とはいえ、7月には物理履修者用の授業と同レベルのことをやっていたので)


シラバスには
(1)自然界の基本的力と電磁場、ローレンツ力、電荷の保存
(2)静電場
(3)定常電流
(4)定常電流による磁場
(5)時間的に変動する電磁場
(6)変位電流とマクスウェル方程式
などと書いてあります。

とりあえず高校の物理の教科書を読むところから始めようと思っているのですが、他におすすめの勉強方法や参考書がありましたら教えてください。お願いします。

理系の学部に通っている大学1年の者です。

10月から電磁気の授業が始まるので、それに備えて今から少し予習しておきたいと思うのですが、どのように勉強すればいいでしょうか。

大学の授業では高校で物理を履修した人と履修していない人で授業が分かれており、私は物理を履修していないので当然履修していない人用の授業を受けるのですが、ついていけるか心配です。

1学期に力学(これも電磁気と同様に物理を履修しているか否かで授業が分かれます)の授業があったのですが全然ついていけませんでし...続きを読む

Aベストアンサー

岩波書店出版の物理入門コース電磁気学Iをおすすめします。
電磁気学では力学の知識も必要ですが、F=maをある程度使いこなせるなら問題ありません。
講義名は「電磁気学」ですが、最初にやることは恐らく数学です。
具体的には、スカラー積、ベクトル積、ダイバージェンス、グラディエント、ガウス定理などを学ぶはずです。
上記の数学の知識は、電磁気学に於いて必要不可欠なものであり、誰もが苦戦する代物です。
高校の物理の教科書から始めるのも良いですが、落ちこぼれることを防ぐためにも、これらの基礎知識を固めるべきかと思います。
因みに、物理入門コースの電磁気学と演習は、初心者の立場で考えると非常な名著であると言えると思います。
大学の図書館にもあるはずですよ。

QF(r)=f(r)r/r のときF(x)=f(r)x/rとなる理由

時間があるので大学1年の物理を再度、深く勉強しなおしているのですが、教科書に当たり前のように書いてあることが分からなくて、しかも聞ける人もいないので質問させていただきました。

教科書の 「中心力F(r)=f(r)r/r が保存力か調べる」とあり(最後のr/rとは位置ベクトルrの単位ベクトルのことです)そのすぐ次の行には「F(x)=f(r)x/rとなるので…」と説明が始まってます。なぜF(x)がこのように求まるのでしょうか?教えてください。

Aベストアンサー

keyguy さんのご回答の通りと思うのですが,
もう少しわかりやすく書いてみますか.

keyguy さんご指摘のように,ベクトルとスカラーの表記に問題があります.
ベクトル r を 【r】 のように書くことにします.

(1)  【F】(【r】) = f(r)【r】/r
ということですね.
x,y,z 方向の単位ベクトルをそれぞれ 【i】【j】【k】とすれば
(2)  【r】= x【i】+ y【j】+ z【k】
です.
つまり,(1)(2)を合わせてみると,
(3)  【F】(【r】) = f(r)x【i】/r + f(r)y【j】/r + f(r)z【k】/r
になっていて,これは【F】の x 成分が
(4)  f(r)x/r
であることを示しています.

Q理系の人へ 物理と生物を選ぶとき生物は受験校があんまりないと言いますが物理を選んだら生物系の大学へ行

理系の人へ
物理と生物を選ぶとき生物は受験校があんまりないと言いますが物理を選んだら生物系の大学へ行くことはできるんですか?
国公立大学の場合

Aベストアンサー

受験できるか出来ないか、ということで言うと、大学によっては、少なくともセンター試験の段階では可能なケースはあり得るでしょう。センターの段階では、選択科目はやや拡げておく場合もありますから。
 一方、各大学の個別試験の段階では、その大学・学部・学科で入学後に必要となる科目を課すのが普通ですから、生物系の大学・学部・学科では、入試科目として生物が必須になっている可能性は高いと思います。ただし、生物系の学科なら、理科を、生物・物理・化学から選択、としている可能性もあります。
 ですから、大学による、としか言いようがありません。

 もっとも、受験の制度上は、高校の時に生物を履修していなくても、生物系の学部・学科の志願(=受験)自体は可能です。合格するかどうかは別問題ですが。

 それよりも・・・
 理系では、学部・学科(専攻)によって内容が全く異なります。そのため、入学後、主に必要となる理系科目も、物理系・化学系・生物系の学科で異なりますし、同じ物理系学科でも、土木建築系・機械系・電気電子情報系で違います。
 理系を志望する場合、その志望の分野(≒学科・専攻)によって、選択する科目はほぼ自動的に決まってしまいます。つまり、本来なら、ご質問のようなことは、あり得ない、ということになります。

受験できるか出来ないか、ということで言うと、大学によっては、少なくともセンター試験の段階では可能なケースはあり得るでしょう。センターの段階では、選択科目はやや拡げておく場合もありますから。
 一方、各大学の個別試験の段階では、その大学・学部・学科で入学後に必要となる科目を課すのが普通ですから、生物系の大学・学部・学科では、入試科目として生物が必須になっている可能性は高いと思います。ただし、生物系の学科なら、理科を、生物・物理・化学から選択、としている可能性もあります。
 で...続きを読む

QE/ρ,(E^1/2)/ρ,(E^1/3)/ρについて教えて下さい!!

 材料について勉強しているのですが、E/ρ,(E^1/2)/ρ,(E^1/3)/ρの意味及び使い分けが分からなくて困っています。
 E:ヤング率、ρ:体積密度です。どうかよろしくお願いします。

Aベストアンサー

E/ρ、 E^(1/2)/ρ、 E^(1/3)/ρ

これらの式、どんなところで使われていましたか ?
何を求めるときに出てきた式でしょうか ?

不勉強かも知れませんが、私には心当たりがありませんので。


人気Q&Aランキング