りん青銅に錫メッキをする理由を教えてもらえませんか?りん青銅は、銅+錫の合金にりんを化合して酸化防止したものと聞きました。また、銅は錫よりも錆びにくいと聞きました。なのに、錆びやすい錫でメッキする理由が分かりません。りん青銅に錫メッキをする理由、錫メッキをしなかったらどうなるのか、を教えてもらえませんか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

錫は、銅よりもイオン化傾向が大きいので、傷がついて錆びるときに、先にスズがイオンとなって溶け出し、中のりん青銅は大丈夫ってワケです。

ブリキ(Fe>Sn)よりトタン(Fe<Zn)の方が、傷ついたときさびにくいってのと同じ原理です。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q融点降下・・・ (・・?)ナゼ?

こちらの過去質問もいくつか見たんですが解らなかったので教えて下さい。

 結晶が推定化合物かどうかを確かめる際に混融試験をやりますよね。その際,標品と同じ化合物なら融点は変わらないけど,異なる化合物だったら融点が降下(融点降下)しますよね。

 質問は,「この融点降下がなぜ起こるのか?」です。結晶の融点より標品の融点が高ければ,混融試験で融点が上がってもいいように思うんですが。なぜ降下?

Aベストアンサー

混融試験で2種類の異なる物質の結晶の接触面の分子に注目します。
両結晶が融けきった溶液の状態では周りに十分な異分子があり固体との
境界温度は十分な凝固点降下になってます。まだ、混融前の結晶では
その分子の周囲には同じ結晶内の分子と接触している異分子があります。
したがって、その分子が周囲の分子から受ける相互作用で、液体・固体の
境界温度は十分な凝固点降下の効果に比べ約半分と考えられます。
  ( 固体・液体関係なく周囲の分子配置だけに着目すると、異分子との
  相互作用が片側半分と考えて、です。)
ただ、これは観念的なミクロな状態での話でごく一部が融けた時点で、
十分混合し、凝固点降下の効果は大きくなり液体状態を保つ温度に余裕が
でき、融解熱を奪いながら周囲を融かすため、温度が下がり、むしろ、
マクロな状態で観測される温度はほぼ十分な凝固点降下に近い状態です。

もし、統計力学を理解していれば、個々の分子のエネルギー分布を使って
説明することによりミクロな状態からマクロに観測される温度の説明が
スマートになりますが、無理でしょう。

これで理解できなければ、授業料を払ってもらって教えている先生に尋ねて
下さい。数千字程度では理解できないでしょうから。

混融試験で2種類の異なる物質の結晶の接触面の分子に注目します。
両結晶が融けきった溶液の状態では周りに十分な異分子があり固体との
境界温度は十分な凝固点降下になってます。まだ、混融前の結晶では
その分子の周囲には同じ結晶内の分子と接触している異分子があります。
したがって、その分子が周囲の分子から受ける相互作用で、液体・固体の
境界温度は十分な凝固点降下の効果に比べ約半分と考えられます。
  ( 固体・液体関係なく周囲の分子配置だけに着目すると、異分子との
  相互作用が片側...続きを読む

Qコネクタピンのりん青銅に錫メッキを行う理由は?

電気部品の接続用コネクタのピンの材料として『りん青銅』が用いられていますが、そこに『錫メッキ』をする理由を教えてもらえませんか?りん青銅は、銅+錫の合金にりんを化合して酸化防止したものと聞きました。また、銅は錫よりも錆びにくいと聞きました。なのに、錆びやすい錫でメッキする理由が分かりません。りん青銅に錫メッキをする理由、錫メッキをしなかったらどうなるのか、を教えてもらえませんか?

Aベストアンサー

銅合金は例外なく「緑青(ろくしょう)=緑っぽい錆」をだす事があるからです。
錫は表面が酸化(錆)しても緑青のように絶縁体にならず電気的に導体です。
コネクターのメッキは金や銀も使われますが、銀は酸化すると黒っぽくなるので金メッキしたものが最良です。

Qポリマーの融点について

ポリマーハンドブックや高分子データ・ブックなどでポリマーのガラス転移温度や融点を調べているとき、けっこう融点が記載されていないポリマーがあることに気づきました。(ガラス転移温度はほとんど全部記載されてました。)なんで融点が存在しないのでしょうか?また、文献によってガラス転移温度や融点の値がまちまちな理由もよくわかりません。

Aベストアンサー

1.ポリマーは次の2つに分類されます
・結晶性高分子(一般的な固体状態で結晶部分と非晶部分が混ざったもの)
  例:ポリエチレン、ポリアミド
・非晶性高分子(一般的な固体状態でほぼ非晶部分のみで形成されるもの)
  例:ポリカーボネート

2.Tg、Tmの定義
・Tg(ガラス点移転)…非晶部分の分子鎖が自由に動ける温度
・Tm(融点)…結晶部分の分子鎖が自由に動ける温度

上記1.2.より結晶性高分子にはTg、Tmが存在し、非晶性高分子はTgしか存在しません。

≪値がまちまちな理由≫
主な理由は分子量によってTg、Tmが異なるからです。
分子量大きい、つまり分子鎖一本の長さが長いとTg、Tmは高くなります。
(分子鎖が長いと、からみあって、なかなか自由に動けないイメージ)
結晶部分と非晶部分の占める割合や形態によっても変わります。

Q炭素を燃やして二酸化炭素ができる 炭素+酸素=二酸化炭素は 化合してますが 酸化はしてますか 化合と

炭素を燃やして二酸化炭素ができる
炭素+酸素=二酸化炭素は
化合してますが
酸化はしてますか
化合と酸化は同じにおこってもいいんですか?

Aベストアンサー

酸化です(酸化は化合の一種です)。

Q金属の融点について

金属の融点について、
アルカリ金属などの金属は融点が低いのに、
他の金属は融点が高いのはなぜですか?
また、金属結合のイメージ的に、そんなに融点が高いのが分かりません。
共有結合のシリカとかよりも高いのがあるのが、よくわかりません・・
宜しくお願い致します。

Aベストアンサー

まず、金属の融点はざっくり言えば結合を構成する電子の数で決まります。

アルカリ金属は完全に閉殻したアルカリ金属イオンを原子1個あたり1個の電子で
繋いでいるような形になっています。これに対して、その隣のアルカリ土類金属では
原子1個あたり2個の電子が繋いでいます。そのため、アルカリ土類金属はアルカリ金属より
融点が高くなっています。また、金属原子の半径が大きくなると最外殻の電子軌道の
電子密度が下がり、結合が弱くなるために融点が下がる傾向があります。(例外有り)

融点が高い金属は遷移金属元素に多く見られますが、これは遷移金属のd軌道の
電子が多いために結合が強くなりやすいという理由が挙げられます。もうひとつの理由として、
このd軌道というのは電子が密集した部分とまばらな部分があり、隣接する原子の
電子が密集した部分同士で結合を作ることによって、結合の電子密度が上がります。
これによって遷移金属の中でも、特に6族元素の周辺は高い融点を示します。
d軌道の電子が増えて閉殻に近づく(11族周辺)と、今度はd軌道内で電子対を作れるように
なるので金属結合に使われる電子が減少し、融点が低くなってくる傾向にあります。

13~15族の典型金属元素も同様に、p軌道の電子が増えて閉殻に近づくために
結合に使われる電子の数が減って融点が下がる傾向があります。

ただし、例外が2つあります。
ガリウム(融点30 ℃)と水銀(融点-38 ℃)です。

ガリウムの固体は複数の結晶構造が入り混じった構造をしており、
原子間の距離(=結合距離)が短いものと長いものが混ざっています。
長い結合は切れやすいため、低い融点を示す原因になっています。

水銀や原子番号が1小さい金は、相対論効果という現象によって特殊な性質を示します。
原子中の電子は、エネルギーが低い(=内側にある)軌道から満たされていきますが、
原子番号が大きくなるにしたがって原子核の電荷が大きくなるために
原子核周辺の存在確率が特に大きいs軌道の電子は軌道が収縮し、
電子が光速と比較できるくらいの速さで運動するようになります。
光速に近い速さで運動する物体の質量は相対論によって増大するため、
電子の質量は増大します。質量の増大によって、本来電荷のみによって収縮する以上に
軌道が収縮し、s軌道の電子は原子の内側に隠れてしまうことになります。

さて、水銀の電子配置は [Xe] 4f14 5d10 6s2 ですが、このうち最も外側にあるはずの
6s軌道の電子が内側に隠れてしまうため、水銀の最も外側にある電子軌道は
4f軌道と5d軌道になります。そしてこの軌道は両方とも閉殻しているために、
自由電子を出すことができず、原子間の引力が極めて弱い(希ガスに近い)ために
水銀は常温で液体、しかも沸点も異常に低いという非常に珍しい性質を示します。

余談ですが、水銀よりも原子番号が1小さい金は、希ガスに似た性質である水銀から
電子を1個剥ぎ取った電子構造をしています。そのため、ハロゲンに似た性質を示します。
金が酸化されにくい(=電子を剥ぎ取られにくい)という性質はこれに由来しています。
さらに電子を放出しやすい金属であるセシウムを金と1:1で混ぜて融解すると
合金ではなく、金化セシウムというイオン性の化合物を生じます。

まず、金属の融点はざっくり言えば結合を構成する電子の数で決まります。

アルカリ金属は完全に閉殻したアルカリ金属イオンを原子1個あたり1個の電子で
繋いでいるような形になっています。これに対して、その隣のアルカリ土類金属では
原子1個あたり2個の電子が繋いでいます。そのため、アルカリ土類金属はアルカリ金属より
融点が高くなっています。また、金属原子の半径が大きくなると最外殻の電子軌道の
電子密度が下がり、結合が弱くなるために融点が下がる傾向があります。(例外有り)

融点が高い...続きを読む

Q【化学・マッチを擦った煙を思いっきり吸ってしまった】 五酸化りんは有毒ですよね? 人間が五酸化りんを

【化学・マッチを擦った煙を思いっきり吸ってしまった】

五酸化りんは有毒ですよね?

人間が五酸化りんを吸いすぎてしまったら人体にどういう悪影響が出ますか?

マッチの擦った後に立つ煙の匂いが大好物なんですけど。

Aベストアンサー

今時のマッチには燐を使用していない。

Q融点についての質問です。

融点が46.5度の物質名と融点が61.5度の物質名を教えて下さい。

後、融点が一番高い物質名と融点が一番低い物質名も出来たら教えて下さい

お願いします。

Aベストアンサー

トランス脂肪酸(エライジン酸)が融点46.5度
パラフィンが60度前後です
油脂のあたりで探してみたらいかがでしょう?
頓珍漢な回答ですか?

一番低い物質といっても常温で気体でもいいのですか?
それは絶対零度のあれではないかと思うのですが・・・
単体の融点・沸点:原子番号が増加するにつれて、沸点・融点も高くなるそうですよ・・・
すごいヒントですね・・

Q酸化銅(II)CuO,銅(I)イオンCu[2+]の( )は何を意味していますか

科学を勉強しはじめたばかりです。酸化、還元の学習で酸化銅(II)などがでてきますがなんのこったかさっぱりわかりません。これが理解できないと先に進めません。どうか易しく教えてください。

Aベストアンサー

遷移金属元素や原子番号の大きい13-16族金属では
複数の酸化数をとります。
酸化数とは、単体(または原子)の状態から何個の電子を失ったか、を表します。

1族・2族ではただ一つの酸化状態のみをとるのでこれを省略します。
しかし、遷移金属元素では複数の酸化状態をとることが多いため、このように区別しているのです。
どうは空気中ではほとんどが2価で酸化銅(II)となっていることが普通です。(窒素中では酸化銅(I)も安定に存在)
また鉄さびには赤さびである酸化鉄(III)と黒さびである酸化鉄(II)鉄(III)という二つが存在します。(酸化鉄(III)は鉄は3つの電子を失った状態、酸化鉄(II)鉄(III)は2個の電子を失った鉄と3個の電子を失った鉄が同じ数だけ混じっています)
この酸化状態を区別するために、(II)だの(III)だのとかきます。
複数ある「酸化鉄」のうち、酸化数をはっきり言うことによって、どの酸化鉄かをはっきりさせることが出来ます。

Q不純物の融点

ある物質の粗結晶の融点はその物質の純結晶の融点と異なるものなのでしょうか? もし異なるのでしたらその理由も詳しく知りたいのですがよろしくお願いします。

また異ならないこともあるのでしょうか?
たとえば粗結晶に2種類の物質が含まれていてそれぞれの融点が100℃と800℃でしたら、この物質の粗結晶も純結晶も融点は100℃を示すよおもうのですが、どうなのでしょうか?

Aベストアンサー

純物質に不純物を混ぜると融点が低下します。これが凝固点降下です。その例は食塩水が0℃以下でも安定に存在することです。
さて、粗結晶ですが、含まれている不純物の含まれ方によって、話は大きくことなります。もし、不純物が目的とする結晶に取り込まれて、結晶としての純度が下がっている場合には、不純物の融点が高くても融点の降下が起こります(塩の融点は数百度ですが、それでも水の融点の低下をもたらしますよね)。
一方、不純物が結晶に取り込まれずに、独立に粗結晶のなかに分散して含まれている場合には、測定された有限は変化しません。これは、水に水に溶けない物質(たとえば石英の粉末)を入れた場合を考えて下さい。これを凍らせば、水と石英の粉の混ざった氷をつくることができますが、氷の融点は変化しません。

Qりん青銅の酸化

りん青銅の薄板が酸化(薄い黒色)しているので、
試しに小さい金属片をサンプルとして研磨剤で磨いてみました。
銅メッキのような銅本来の色になりましたが、
問題は無いでしょうか?

元来の酸化皮膜みたいなのが、あるのでしょうか?
また、それが取れてしまったりするのでしょうか?

Aベストアンサー

酸化皮膜ではなく「硫化皮膜」だと思われます。(銀器でよく見られる)
リン青銅でしたら赤銅色を保っているのが普通です。


人気Q&Aランキング