周の長さが40cmの長方形を作りたい。長方形の面積を最大にするためには、縦の長さを何cmにすればよいか。


できれば式と答えを教えてくれませんか?
よろしくお願いします。

A 回答 (2件)

周の長さが一定の長方形の中で、


面積が最大なのは、正方形です。

下図のように、周の長さが同じ正方形と長方形を
ひとつの直角が重なるように描いてみると、
はみ出した部分の短い辺が同じ長さになります。
ピンクの部分の面積が ab、
ブルーの部分の面積が (a-b)b ですから、
正方形の面積は、長方形より大きいですね?

周の長さが40cmの正方形の一辺は、10cmです。
「教えてください」の回答画像2
    • good
    • 0
この回答へのお礼

わかりやすい解答ありがとうございます!

お礼日時:2011/04/21 06:34

長方形の縦の長さを y [cm],横の長さを x [cm] とします.


長方形の周の長さは40 cmなので,
2x + 2y = 40 [cm]
∴x = 20 - y [cm].

したがって,この長方形の面積 S [cm^2] は次のように表される:
S = xy = (20 - y)y = -y^2 + 20y = -(y - 10)^2 + 100. …(1)

ただし,長方形が成立するには y > 0 かつ x > 0 でなければならないので,
0 < y < 20.
この範囲でSは,(1)式より
y = 10 [cm]
のとき,最大値
S = 100 [cm^2]
をとる.

答:縦の長さを 10 cm にすればよい.
    • good
    • 0
この回答へのお礼

本当にありがとうございました!

お礼日時:2011/04/20 06:15

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q面積の求め方に関して

面積の求め方に関して質問です。


正方形の面積の求め方は底辺×高さで求めます。

底辺=25、高さが25の場合は

25×25=625になります。



円周の長さから面積を求める場合は

長さ÷3.14÷2=答え÷2の答え×答え×3.14

長さ100とした場合

100÷3.14÷2=15.9235・・・・

四捨五入して15.92として

15.92×15.92×3.14=795.82

四角形も直線にした場合は長さが100となりますよね?

なぜ面積の答えが違うんでしょうか?

小学生にもわかる回答で教えていただければ幸いです。

※そもそも円周の長さから面積の求め方が間違っているんでしょうか??

Aベストアンサー

円周--周囲の長さと面積は、図形の形が異なれば無関係です。

たとえば、周囲の長さが同じでも、正方形よりは長方形のほうが面積が小さいですね。

円を20等分して並べ替えてみると図のようになります。

 このように、同じ周長なら円がもっとも面積が大きい。言い換えれば同じ面積なら丸が一番周長は短い。だから、バーゲンで袋にいっぱいつめれば丸くなっちゃう。水に浮かんだ油の粒が丸くなる。水と油の境界線をもっとも短くしようとするから円になるのです。

 体積も同じで、宙に浮かぶ水滴が球になるのは、表面張力で表面を小さくしようとすると、球になってしまう。同じ体積なら球がもっとも表面積が小さい。

Qある長方形の面積から60%も導き、さらにその60%の長方形の面積から2辺の長さを求めたい。

例えば、とある長方形の面積60%の値を求めて、さらにその60%の面積になる長方形の、
縦と横の辺の長さを求めたいです。
数学が苦手で、どの様に計算したら良いか、わかりません。。どなたか教えてください。
よろしくお願いします。

Aベストアンサー

「2.9x1.7」の長方形の免責は 2.9×1.7=4.93 になります。
この長方形の面積の60%の60%は 4.93×0.6×0.6=1.7748 です。
長方形の縦横の比を同じにすると云う事は、同じ数で割ればよいのですから、
縦は 2.9×0.6=1.74 、横は 1.7×0.6=1.02 になります。
(確かめ算 1.74×1.02=1.7748 で、正しい事が解ります。)

>例えば、「2.9x1.7」の長方形の60%時の縦と横の辺を求めるには、

縦と横を掛けた値が元の60%ですから、一つ一つは0.6の平方根を掛けた物になります。
(2.9×√0.6)×(1.7×√0.6)=2.9×1.7×0.6 になり、実際に√0.6を計算する必要が無くなります。
(実際は0.6の平方根は無理数になり、約0.7746 です。)

エクセルで記入するには、それぞれのセルに計算式を入れるだけです。
セルA1の数字の平方根をA2に入れたい場合は、
A2のセルに関数SQRT(A1)と入力します。

Q図形の面積の求め方(定積分の応用)

図形の面積の求め方を教えてください。

円 x^2+y^2=2 と 放物線 y=-x^2 で囲まれた図形のうち上側の部分の面積の求め方

Aベストアンサー

ヒント)

上側の部分の面積S1,下側の部分の面積S2とすると
円の面積S=S1+S2=πr^2=2π
S1=S-S2=2π-S2

S2は
円と放物線の交点(-1,-1),(1,-1)から
S2=∫[-1,1] -x^2-{-√(2-x^2)}dx
=2∫[0,1] [{√(2-x^2)}-x^2]dx
 =2∫[0,1] {√(2-x^2)}dx -2∫[0,1] x^2dx
から計算できますね。

Q周の長さの和がaで一定の凸n多角形で、面積が最大になるものはどんなn多

周の長さの和がaで一定の凸n多角形で、面積が最大になるものはどんなn多角形か。
n=3のときは、正三角形のときで、次のように考えました。
一辺を底辺とし固定して、2辺の和が一定だから2頂点は楕円の焦点になり、残りの1頂点は
楕円上の点になる。底辺が固定されているから高さが最大になるときより、1頂点は底辺の垂直
2等分線上にある。よって、2等辺三角形のとき面積最大になる。このあとは、底辺、等辺を文字で
あらわして、面積を微分して求めました。(他の簡単な解法があれば紹介してください)
n>=4以上のときはどうすればよいのでしょうか。
大きな流れでよいので教えてください。

Aベストアンサー

「等周問題」などで検索すると、図入りのサイトがいくつかありました。

 以下、偏微分を用いる方法の、大まかな流れ。

 隣り合う二辺が等しいことは、三角形の場合と同様にして分かる。

 n多角形を、n個の二等辺三角形に分割して、適当な角度を用いて、その二等辺三角形の面積和を表す。

 n個の角度(変数)の和が満たす条件のもとで、その面積の和の極値を求める。

 求める方法としては、ラグランジュの未定乗数法など。

Q外壁面積・屋根面積の求め方

延べ床面積からの外壁面積と屋根面積の求め方を教えてください。

Aベストアンサー

こんにちわ

屋根と外壁の塗装リフォームですか?^^

#1のご経験者さんが語ってくださってる通り、結構大変です。

継ぎ足しでもう少しポイントをいいますと…

屋根について=床面積が同じでも、屋根の勾配が強かったり弱かったりで、
屋根の面積、瓦の数はドーん!と変化してしまいます。
学校で習った「直角三角形の斜辺」を考えてみてください^^
さらにお屋根の場合、「軒の出」がおまけとして必ずついていますので、これを足してあげないとこれまた何割か誤算が生じてしまいます。
ふだんは「こんなもん、屋根のうちに入らない」と思っているような小さな「軒の出」や、「霧よけ」と言われるプチ屋根もどきがあちこちにありますので気をつけてチェックしてみてください。
もらった図面がお手元にあるようでしたら、これらはまず、「間取り図」ではなくて
「立面図」を見て屋根の勾配にあわせて軒の出まで含めてモノサシを当ててみると素人でもわかりやすいですので試してみてください。
それに隠れた「プチ軒」になる部分がどれぐらいあるか、お家の回りをぐるっと外から見てチェックしてみてください。
(結構、設計屋さんからもらっている図面と、実際建っている自分の家とが細かい所で違ってる!なんてことがよくありますので)
さっきの「立面図」で勾配の具合をチェックしたら、こんどは「屋根伏せ図」で平面的なサイズを見ます。「屋根伏せ図」という図面は省略されてしまっているかも知れませんが、「二階平面図」を見るとかならず一階の軒にあたる屋根が描かれていますのでチェックしてみてください。
二階の屋根伏せは完全に省略されてるかもしれませんので、それは「二階平面図」の大きさプラス「軒の出」で直角三角形の底面を求めて、これに最初に「立面図」でたしかめた「屋根勾配」で直角三角形の斜面の大きさを出せばよいことになります。


外壁の面積は、ペンキ塗り替え工事の場合でしたら、窓ガラスの分を引き算するのを忘れずに!
(南側などはかなり引き算の面積が大きくなりますので)

うまくいくといいですね!

こんにちわ

屋根と外壁の塗装リフォームですか?^^

#1のご経験者さんが語ってくださってる通り、結構大変です。

継ぎ足しでもう少しポイントをいいますと…

屋根について=床面積が同じでも、屋根の勾配が強かったり弱かったりで、
屋根の面積、瓦の数はドーん!と変化してしまいます。
学校で習った「直角三角形の斜辺」を考えてみてください^^
さらにお屋根の場合、「軒の出」がおまけとして必ずついていますので、これを足してあげないとこれまた何割か誤算が生じてしまいます。
ふだんは「こ...続きを読む

Aベストアンサー

長方形ならピタゴラスの定理でとけます。
式は
√(110×110+100×100)

です。

約149cmです。

Q小学6年生で三角形の面積求め方わかりません

小学6年生の親です。
学校のテストでわからなかった三角形の面積求め方わかりません。
私も色々考えたのですが底辺7cmの隣の点線部分の求め方がわからないのです。
アドバイスお願いします

Aベストアンサー

小学生で習う三角形の面積の求め方は、(底辺×高さ)/2です。
この時でいう高さは、三角形の中に書かれていたり外に書かれていたりしても底辺に対して直角のものとして定義しています。
ですから今回は実線部の三角形の外に飛び出て書かれているものが高さになります。

要するにこの実線部の三角形の底辺は7cm、高さは8cmですので、実線部の三角形の面積の(7×8)/2で28。
答え、28cm2になります。

ちなみに点線部の長さを求めるには今回の場合、何かしらの角度が必要なので求めることができません。

Q長方形の周の長さ

『放物線y=9-X^2とX軸で囲まれた部分に、長方形PQRSをPQがX軸上にあるように内接させる。この長方形の周の長さが最大になるときのPQの長さを求めよ』という問題がありました。この解説で“点R(X、9-X^2)とおくと、周の長さLは、L=2(2X+9-X^2)”となっていたのですが、2(2X+9-X^2)の2Xっておかしくないでしょうか?4辺のうちXの長さの辺が2つと、9-X^2の長さの辺が2つですから、2(X+9-X^2)ではないでしょうか?
よろしくお願いいます。

Aベストアンサー

   S ・ ・ ・ O' ・ x ・ R
   ・              ・
   ・              ・
   ・               ・
   ・           {9-(x^2)}
   ・              ・
   ・              ・
   ・              ・
   ・              ・
   P ・ ・ ・ O ・ x ・ Q

もう気が付いているとは思いますが、
xの長さ が4個と {9-(x^2)} が2個だから、

L=2[ 2x+{9-(x^2)}]
 =2[ 2x+9-(x^2) ] ← 解説の通り。

-----------------

Q扇形の面積の求め方

中学を卒業して早二十年近く経ちました。
いまだに印象深い公式のひとつに「扇形の面積の求め方」があります。
というのも、扇形の面積を求める公式に関してオリジナル式を発案(というほど大したアイディアではないですけど)し、それをテストで使用してバツを喰らったからです。
先生に抗議にいったものの「オリジナルは不可」と一蹴されてしまいました。

そんなわけで、いまだに自作の式だけは覚えています。
ところが、最近本屋で立ち読みすると「扇形の面積の求め方」の式が昔と違っていました。
ちらっと立ち読みしただけなので、見違えたのかもしれません。

長くなりましたが質問です。
扇形の面積の求め方は

弧の長さ×半径×2

であっていますか。これは今でも使われているのでしょうか。

Aベストアンサー

「弧の長さ×半径÷2」です。平行四辺形に変形して解くやり方ですね。
http://www.manabinoba.com/index.cfm/4,6147,73,html
三角形として考える考え方もあるようです。
http://web2.incl.ne.jp/yaoki/k15.htm

中心角が分かっていれば、半径^2×3.14×(中心角/360°)です。どちらも使われていますね。

参考URL:http://www.manabinoba.com/index.cfm/4,6147,73,html,http://web2.incl.ne.jp/yaoki/k15.htm

Q長方形の縦の長さ

●横が縦より長い長方形から、この長方形の縦の辺を1辺とする正方形を片側から切り取ったとき、残った長方形の縦と横の長さの比が、もとの長方形の横と縦の長さの比に等しかった。このとき、もとの長方形の横の長さを1とすると、縦の長さはいくらか。

求める長さをxとすると0<x<1となるのは分かるのですが…
回答よろしくお願いします。
答えは(-1+√5)/2となります。

Aベストアンサー

もとの長方形の縦・・・x、横・・・1
正方形の一辺はx、1からxを切り取ればその残りの長さは1-x
よって、正方形を切り取って残った長方形は辺がxと1-x
題意から、x:1=(1-x):xが成り立ち・・・
と、図をかいて問題に沿って式を作り、2次方程式を解けば
求められます。


人気Q&Aランキング

おすすめ情報