【お知らせ】まとめて検索などの提供終了

手のように身近なキラルな物体、なにかあれば教えて下さい。

このQ&Aに関連する最新のQ&A

秋田 犬」に関するQ&A: 秋田犬を飼っている方

A 回答 (2件)

簡単でわかりやすいものなら,野球のグローブ,ゴルフクラブ,アナログ時計,ネジなどがありますね.



あと,文字の書かれているものは,たいていキラルになりますよね.

ちょっと変わったところでは,ハサミ,おたま(片方がとがったタイプのもの),鎌(草を刈る道具)など.いずれも,左利きの人には使いにくい道具です.

生物(外観上)では,巻貝,シオマネキ(片方のハサミが大きいカニ),イスカ(くちばしが食い違う鳥),イッカク(左の前歯がツノのように伸びている.しかも左ネジの溝つき)などがあります.秋田犬も,尻尾の巻き方がオスとメスで違いますので,雌雄が互いにキラルな関係になってますね.
    • good
    • 2
この回答へのお礼

言われてみればたくさんありますね。
ありがとうございます。

お礼日時:2003/10/22 15:17

左利き用のマウス、見たことありますよ。

左手にフィットするように作ってあるんですね。
他にも、左利き用グッズは色々ありそうですよね。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qアキラルとは。

アキラルというものが解りません。辞書によると
キラルというのは像と鏡像が重なり合わないもので、
アキラルは像と鏡像が重なり合うらしいのですが、
(像と鏡像が)重なり合うと云う事は、おんなじ物質
というのと違うのでしょうか。

どなたか詳しい方がいらっしゃいましたら回答
宜しくお願いします。

Aベストアンサー

> アキラルというものが解りません。

 簡単に言えば,「キラルでないもの」をアキラルといいます。


> アキラルは像と鏡像が重なり合うらしいのですが、
> (像と鏡像が)重なり合うと云う事は、おんなじ物質
> というのと違うのでしょうか。

 はい,同じ物質です。よく使われる例に手袋があります。右手用(あるいは左手用)の手袋を鏡に写すと,左手用(右手用)になり,元の右手用(左手用)とは異なります。この様な場合を「キラル」と言います。

 一方,靴下の場合,右足(左足)用とも形が同じですので,右(左)足用の靴下を鏡に写しても同じ右(左)足用になります。この様に,鏡に写しても元と同じになる場合を「アキラル」と言います。

 「キラル」,「アキラル」と言う言葉は出てきませんが,下の過去質問「QNo.337088 光学不活性・・・」の ANo.#3 の回答とそこで紹介されている過去質問が参考になると思います。

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=337088

Q配位子場安定化エネルギー???

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデルタのような記号Δは何ですか? 扱っている教科書に出てきません。意味も読み方もわかりません。添え字の t と o も何なんでしょうか。解答に oct と tet がありますからこれのことなんでしょうけど、何の単語の頭文字でしょうか。

LSFE も???です。こちらはまだ教科書で探してみていないので、ひょっとしたら載っているかもしれませんが。

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデ...続きを読む

Aベストアンサー

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2=4個。高スピン型だからエネルギー準位の低い軌道(t2g軌道)に3個電子を詰めた後に、エネルギー準位の高い軌道(eg軌道)に残りの1個の電子を詰める。t2g軌道の電子のエネルギーは電子1個あたり(-2/5)Δoで、eg軌道の電子のエネルギーは電子1個あたり(+3/5)Δoだから、LFSEは
(-2/5)Δo×3+(+3/5)Δo×1=(-3/5)Δo
となる。

他も同様です。がんばって下さい。

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2...続きを読む

Q光学活性をもつ光学異性体について

光学活性を持つ光学異性体について説明するときに、どんなふうに説明すればいいですか?(具体例をお願いします)
また、その測定方法を図示する場合はどうすればいいですか?

Aベストアンサー

 質問者本人が、用語の意味をしかっりと理解していないようですね。まずは、ご自身で有機化学の教科書の立体化学の章をじっくりと読むことをお勧めします。この類の用語は有機化学を専攻している学生でも区別出来て無いことが多いので、別に質問者さんを責めているわけではありません。
ここで、全てを説明することは難しいので要点を書きます。

『光学活性』とは、既に回答があるとおりに「光の偏光面を回転させる性質のある物質」です。

『鏡像異性体(エナンチオマー)』とは、「二つの化合物の構造式について、平面に書いた(=3次元立体構造を無視した)構造式は等しいが、立体構造を考えると重なり合わず、丁度鏡に映した物同士の関係(実像と鏡像)になるもの」を指します。例えば右手と左手。L-アミノ酸とD-アミノ酸など。

鏡像異性体を有する分子構造を『キラル(掌性)』と呼びます。一般に炭素原子に異なる四つの置換基が着くとキラルな分子と成り、その四つの異なる置換基がついた炭素原子の事を『不斉炭素』と呼びます。

『光学異性体』とは、『鏡像異性体』の内『光学活性』なものの関係を指します。一般に、「全ての光学活性体には光学異性体の関係を満たす分子が存在し、その光学異性体同士は、光の旋光面が丁度正負の関係で反転しています。例えば、ある化合物が光学活性でその旋光度が+20°なら、その鏡像異性体は-20°の旋光度を持ち、それらは光学異性体の関係にあります。

ここで、ちょっとややこしい書き方をしましたが、それは、次の理由によります。

 全ての『光学活性体』は『キラル』な構造を有し『鏡像異性体』が存在するが、全ての『キラル』な分子が『光学活性体』では無い。
と言う事実と、
『不斉炭素』を持たない『キラル』化合物があり、『不斉炭素』有していても『キラル』でない(=アキラル)、すなわち、光学不活性な分子も存在するからです。

 例えば、L-酒石酸は光学活性でその光学異性体(かつ鏡像異性体)は、D-酒石酸ですが、世の中には光学不活性なメソ酒石酸なる分子も存在します。この三つの分子構造は、平面状に書くと(立体を無視すると)全て同じです。ご自分で調べてみてください。
 また、キラルで光学不活性(鏡像異性体が存在するのに光学不活性)な分子として、5-エチル-5-プロピルウンデカンという分子が存在します。(Wynberg. H, Hulshof. L. A., Tetrahedron, 1974, 30, 1775)


 質問に直接答えていないうえ、長文で申し訳なく思いますが、この質問に答えるには、質問者様が上記説明にでてきた『』でくくった単語の意味を正確に理解することが第一だと思いこのような回答をさせていただきました。
 私の回答も専門家の方が読んだら不適切な部分があると思いますので、その場合適宜訂正を入れてください。

 質問者本人が、用語の意味をしかっりと理解していないようですね。まずは、ご自身で有機化学の教科書の立体化学の章をじっくりと読むことをお勧めします。この類の用語は有機化学を専攻している学生でも区別出来て無いことが多いので、別に質問者さんを責めているわけではありません。
ここで、全てを説明することは難しいので要点を書きます。

『光学活性』とは、既に回答があるとおりに「光の偏光面を回転させる性質のある物質」です。

『鏡像異性体(エナンチオマー)』とは、「二つの化合物の構造式...続きを読む

Qラセミ混合物であるかラセミ化合物であるか・・・

ある化合物のラセミ体結晶がラセミ混合物であるか、あるいはラセミ化合物であるかを赤外スペクトルによって判断できるようなのですが、どのような原理でわかるのでしょうか・・・?

わかる方いらっしゃいましたらよろしくお願いします。

Aベストアンサー

IRとは、溶液法やヌジョール法ではなく、結晶状態のIRのことです。

つまり、ラセミ混合物(コングロメリット)は、結局光学活性体の結晶の集まりなので、RRRRとSSSSSの混合物です。もちろん、RRRRRとSSSSSは結晶化構造は同じなので、結局光学活性体と同一の結晶構造を採ります。
 対して、ラセミ化合物は、RSRSRSRSなので、そのパッキングの仕方=分子間相互作用の仕方は光学活性体のそれとは異なります。したがって、分子の配座や振動・伸縮エネルギーに違いができてきます(違う結晶ですから)。そのため、IRに違いがでてきます。
 ちなみに、XRDなどにも違いがでてきますし、一般に融点や溶解度を測るだけでもどちらか区別できます。
 ラセミ固溶体はケースバイケースとしかいいようが無いかと。

Qキラルとアキラルって??

今、大学の有機化学の課題で苦戦をしています。
内容は、
「次の化合物の構造式を記せ。また、全ての化合物についてキラルまたはアキラルを判定せよ。もしキラル化合物の場合には、可能な立体異性を過不足なく書き、不斉炭素にはR,S表記をしなさい。」
2,4-dimethyl-N-methylaniline 40bromohexan-2-ol
N,N-dimethylformamide acrylamide
3-ethyl-5-methylcyclohexanol 2-methylcycloheptane-1,4-dione

でした。いくつかは構造式まで調べることはできたのですが、全くわからないもの、そしてすべてにおいてキラルアキラルの判定の仕方がわかりません。何を調べてよいかもわからず途方にくれております。

Aベストアンサー

キラル炭素を持っているのは:
40bromohexan-2-ol (40を4-の誤記と解釈しました)(キラル炭素2個:臭素の付いている炭素とOHの付いている炭素)
3-ethyl-5-methylcyclohexanol と(キラル炭素3個:エチルの付いている炭素、メチルの付いている炭素、OHの付いている炭素)
2-methylcycloheptane-1,4-dione (キラル炭素1個:メチルの付いている炭素)になります。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q光学不活性・・・

光学不活性ってなんかイマイチ意味が分からないんですけど・・・

酒石酸に数種類の立体異性体があって、そのうちに光学不活性なのがあるとかないとかで・・・

光学不活性って鏡に映しても一緒って事ですか?

Aベストアンサー

まず、異性体をもつ化合物について一応説明。
これは、わかりやすくいえば鏡に映したときの鏡像と本体が重なり合わない化合物のことです。

(一番簡単な例)
(1)      :(2)
   1    :   1
   │    :   │
 2-C-3  : 3-C-2
   │    :   │
   4    :   4

1~4が全部別の原子だったら(1)と(2)は重なり合いませんよね。
この場合の(1)と(2)を互いに光学異性体といいます。
ここで話は変わりますが、光は波ですよね。
今に上下に振動している光を考えて、この光を(1)、(2)にそれぞれあてます。
すると、例えば(1)では光が右に15度、(2)では左に15度回転してしまいます。
これが光学異性体の性質なんですね。
(1)が右に回転させただけ(2)は左に回転させる、と。

ここで本題。長々すいません(-_-A;)
光学活性っていうのは、光を当てたときに光が回転しちゃう物質のこと、光学不活性はその逆です。
だから、鏡に映しても一緒なものが光学不活性っていうのは正しいんです。
けど、それだけじゃなくて、例えば(1)と(2)が等量含まれてる物質があったとしたら?
(1)で右に15度、(2)で左に15度ですから、結局もとどうりですよね。
だからこれも光学不活性。
酒石酸の光学不活性なもの(ラセミ酸)っていうのはつまり
(1)と(2)がおんなじだけ入ってるものって事です。
えーと、ほんとに長くなっちゃったんですけど少しでも参考になれば。

まず、異性体をもつ化合物について一応説明。
これは、わかりやすくいえば鏡に映したときの鏡像と本体が重なり合わない化合物のことです。

(一番簡単な例)
(1)      :(2)
   1    :   1
   │    :   │
 2-C-3  : 3-C-2
   │    :   │
   4    :   4

1~4が全部別の原子だったら(1)と(2)は重なり合いませんよね。
この場合の(1)と(2)を互いに光学異性体といいます。
ここで話は変わりますが、光は波ですよね。
今に上下...続きを読む

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Qアミノ酸のL型、D型の区別そ仕方

****CH3
****|
 H2N─ C─COOH
****|
****H 

上の構造式はアラニンですが、これがL型かD型かを判断するのに困っています。
定義では不斉炭素を中心にカルボキシル基を上に書いた場合に、アミノ基が左側にくるのがL型です。しかしこの定義のまま動かしてみると、

   COOH
****|
 CH3─ C─H
****|
****NH2
このようにアミノ基が下になってしまうため、判断に困っています。
アドバイスをお願いいたします。

(注意!:記号*は構造式を書くときに軸をそろえるために付けたものです。)

Aベストアンサー

D型とかL型というのは光学異性体を区別するための記号です。グリシン以外のアミノ酸の場合は、中心の炭素原子に4つの異なる基が結合しているために光学異性が生じます。

炭素原子の4つの単結合は、正四面体の中心に炭素原子があるとすると、正四面体の4つの頂点の方向に向かっています。つまり、実際の形は構造式に描かれるような十字型ではないのです。
(参考)
http://www.geocities.com/yoshihitoshigihara/isei.htm

さて、ご質問のようにアミノ酸の構造式を十字型に描いてある場合は、なんとなく描いてあるのではなく、意味があります。これはフィッシャー投影式といいます。

フィッシャー投影式では、「左右の結合は紙面より手前に出ている」「上下の結合は紙面の向こう側に出ている」というのがルールです。このルールにより、正四面体型の構造を、紙面で表示できます。

アミノ酸をフィッシャー投影式で描いた場合、上にカルボキシル基、下に側鎖を書いたときに、左にアミノ基が来るのがL型、右にアミノ基が来るのがD型です。

では、「上にカルボキシル基、下に側鎖」となっていないときに、どうするかです。フィッシャー投影式のルールから考えると、ご質問のように90度回転させてはいけません。90度回転させると、「紙面の手前」と「紙面の向こう」が逆になりますから、D型がL型に、L型がD型に変わってしまいます。
(180度の回転はOKです)

どうすればよいのかといえば、できることは次の2つです。
(1)3つの基を循環的に入れ替える(いわゆる三角トレード)。
(2)二組の2つの基を、両方同時に入れ替える。

ご質問の上のフィッシャー投影式ですと、上の(1)を適用して、「COOHを上に移動、CH3を下に移動、Hを右に移動」という形で循環的に入れ替えると、左にアミノ基が来てL型であることがわかります。

よくわからなかったら、分子模型を作ってみるとよいと思います。

D型とかL型というのは光学異性体を区別するための記号です。グリシン以外のアミノ酸の場合は、中心の炭素原子に4つの異なる基が結合しているために光学異性が生じます。

炭素原子の4つの単結合は、正四面体の中心に炭素原子があるとすると、正四面体の4つの頂点の方向に向かっています。つまり、実際の形は構造式に描かれるような十字型ではないのです。
(参考)
http://www.geocities.com/yoshihitoshigihara/isei.htm

さて、ご質問のようにアミノ酸の構造式を十字型に描いてある場合は、なんとなく...続きを読む

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む


人気Q&Aランキング