
No.1ベストアンサー
- 回答日時:
曲線(直線を含む)の方程式は
(1)2つの曲面(平面を含む)の交線として定義できます。
あるいは
(2)媒介変数tを1つ用いる媒介変数表示で定義できます。
(1)だと
回転放物面z=x^2+y^2
と
平面y=x
の交線、つまり2つの方程式
z=x^2+y^2,y=x
で求める放物線の式を定義できます。
2番目の式を1番目に代入して
z=2x^2,y=x
の2つの方程式でも求める放物線の式を定義しても良いです。
(ただし、この表現は45°回転したというイメージは薄くなります。)
(2)
(x,y,z)=(s,s,2s^2)
なお、この他に球面座標表現、円筒(円柱)座標表現もあります。
丁寧な回答ありがとうございます。
(1)の2曲面の交線でy=x平面のイメージが上手く掴めないでつっかえてました。
(2)の媒介変数表示はすっきりとしてて良いですね。
(3)の極座標や(4)の円柱座標は慣れてないのでやや難しく感じます。
No.2
- 回答日時:
#1です。
極座標系で考えると求める曲線は以下のようになります。
(3)球座標による表現
(x,y,z)=(r sinθcosφ,r sinθsinφ,r cosθ) …(A)
φ=π/4,cosφ=sinφ=1/√2 …(B)
(A)に代入
(x,y,z)=(r sinθ/√2,r sinθ/√2,r cosθ) …(C)
z=x^2のxをr=√(x^2+y^2)に入替えて
z=x^2+y^2
これに(C)を代入して
r cosθ=(r sinθ)^2
r=cosθ/(sinθ)^2 …(D)
球座標での表現(r,θ,φ)=(f(θ,φ),θ,φ)
r=f(θ,φ)=cosθ/(sinθ)^2 (φ=π/4,0≦θ<2π)
媒介変数表示(θ=tとおいて)
(r,θ,φ)=(cos(t)/(sin(t))^2,t,π/4) (0≦t<2π)
(4)円柱座標(円筒座標)による表現
(r,θ,z)=(√(x^2+y^2),θ,z), x=r cosθ, y=r sinθ
z=x^2をθ=π/4回転すると x=r cos(π/4)=r/√2, y=r sin(π/4)=r/√2
z=r^2
円柱座標での表現 (r,θ,z)=(r,θ,f(r,θ))
z=f(r,θ)=r^2 (θ=π/4、5π/4,r≧0)
媒介変数表示 (r→tとおきtに±符号を導入しθ=5π/4の式を吸収させる)
(r,θ,z)=(t,π/4,t^2) (媒介変数tの範囲:全実数範囲)
参考URL:http://ja.wikipedia.org/wiki/%E6%A5%B5%E5%BA%A7% …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 【 数I 2次関数 】 問題 放物線y=x²-4x+3を,y軸方向に平行移動 して原点を通るようにし 4 2022/06/26 22:03
- 数学 【 数I 2次関数の対称移動 】 問題 ※写真 疑問 放物線y=2x²+xをy軸に関して対称移動 す 3 2022/07/02 23:28
- 数学 放物線の対称移動の問題の答え方について質問があります 解く時に平方完成の形にして解くと思うのですが、 4 2022/05/30 18:17
- 数学 数学 x軸に関して対称に移動した放物線の式は x軸に関して対称に移動された放物線の式のyに−をつけて 1 2022/07/14 21:03
- 数学 数学 2次関数 1 2023/05/10 21:45
- 数学 数学 2次関数 2 2023/04/09 19:08
- 物理学 力学の微分の質問です。 答えを教えてください。至急です。 問題1ある軸の上を並進運動している物体の位 2 2023/01/31 15:10
- 数学 放物線y=3x^2+6x-9とx軸で囲まれた図形の面積を求めよ。という問題があるのですがこういった放 4 2022/06/16 21:04
- 物理学 どうして放物線ですか? 15 2023/06/11 09:53
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
次の平面、曲面で囲まれた部分...
-
五芒星の角(?)の座標
-
2番の問題について質問です 解...
-
数学・三角比の質問
-
位相がよく分かりません。 cos(...
-
cos(10π/3)は計算可能ですか?
-
扇形の図形に長方形が内接
-
この1/2はどこからでてきました...
-
cosπ/2やcos0ってどのように求...
-
1 / (x^2+1)^(3/2)の積分について
-
解答の過程も含めてお願いします。
-
数3の極限について教えてくださ...
-
f(X)=[cosX]がなぜ不連続になる...
-
cos(π/2-α)=sinαになるのはど...
-
cosx<0(0≦x≦2π)の範囲を教えて...
-
y=sin4θとy=cos4θのグラフの...
-
cos π/8 の求め方
-
sinθ・cosθの積分に付いて
-
この問題の解き方を教えてください
-
いろいろな公式
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
位相がよく分かりません。 cos(...
-
1 / (x^2+1)^(3/2)の積分について
-
数3の極限について教えてくださ...
-
cosπ/2やcos0ってどのように求...
-
複素数のn乗根が解けません
-
1/5+4cosxの0→2πまでの積分で、...
-
重積分の問題
-
数学の問題です。 写真の積分を...
-
なぜ3/4πがでてくるのか 分かり...
-
重積分について
-
1/(sinx+cosx)の積分
-
数学IIIの積分の問題がわかりま...
-
複素数α=cos2π/7+isin2π/7にお...
-
y=sin4θとy=cos4θのグラフの...
-
cos π/8 の求め方
-
∫[0→∞] 1/(x^3+1)dx
-
積分∫[0→1]√(1-x^2)dx=π/4
-
sinθ=3/5、(π/2<θ<π)のとき・・...
-
√π/2 の意味
-
極座標θ r φの範囲
おすすめ情報