ここから質問投稿すると、最大10000ポイント当たる!!!! >>

H2O分子のC2軸のまわりの慣性モーメントを求めたいのです
(H-O-Hの結合角は104.5°、結合長はO-Hは95.7pm)
同様にC H Cl3分子のC3軸のまわりの慣性モーメントもです(H-C-Clは142°、結合長はC-Clは177pm)

COのような直線系の慣性モーメントならわかるのですが・・・どうも角度が入り頭が混乱して解けません、教えてくださいお願いします。

A 回答 (1件)

慣性モーメントは I=Σmiri^2 で定義されますね。

ここでmiは原子の質量で”riは回転軸からの距離”ですね(””の引用部に留意)。例えば下の図(絵はまずいがA、B、Cはz軸を含む同一平面状にあるとする)でz軸回りの慣性モーメントIzを考えましょう。原子A,B,Cのz軸への距離rA、rB、rCは点A,B,Cからz軸への距離の長さ(B,Cは半角破線の長さ)となりますね。従って
 Iz=mA・rA^2+mB・rB^2+mC・rC^2
これをヒントにH20やCHCl3の場合を計算してみてください。
         z  B
         |---●
         | / 
     A   |/ 
     ●--- 
         |\
         | \
         |---●
            C       
    • good
    • 0
この回答へのお礼

ありがとうございました。
私は2回、3回回転軸のところでつまずいていました。
おかげで理解ができました。

お礼日時:2004/01/12 19:15

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Q酸無水物を使ったFriedel-Craftsアシル化について

Friedel-Crafts反応のアシル化について質問させて下さい。
教科書にも出てくる塩化アルミニウムを使った酸塩化物での反応機構は理解できるのですが、酸触媒を使った酸無水物でのアシル化の反応機構が分かりません。

例えば、過塩素酸を触媒とした反応でベンゼンを無水酢酸でアシル化した場合、アセトフェノンが出来ると思いますが、これらの反応機構はどのように進むのか
また、副生成物等の有無や化学等量の関係など、もしご存知の方がいらっしゃいましたらご教授願います。
詳しく解説されているサイト等もございましたら是非教えていただければと思います。

どうぞ宜しくお願い致します。

Aベストアンサー

いずれにしても、アシルカチオンが生じることにかわりはありません。
無水酢酸とH+が反応することによって、酢酸とアセチルカチオンが生じます。
そこから先は、通常のFriedel-Crafts反応と同じです。
通常のFriedel-Crafts反応では、HClが生じますが、酸無水物を使うとその代わりにカルボン酸が生じます。

Q一分子の基底状態と励起状態の縮退度の求め方

1辺aの立方体に質量mの内部構造のないNコの同種粒子からなる気体がある。
一粒子のエネルギー準位は次のように書ける。
E=h・h(nx・nx+ny・ny+nz・nz)/(8ma・a)
hはプランク定数。nx,ny,nzは自然数。

という問題で
「一分子の基底状態と励起状態の縮退度はそれぞれいくらか」
というのがテストで出たんですがわかりませんでした。
答えあわせをしてくれないので困ってます。
どなたかわかる方いませんか?教えてください(泣

Aベストアンサー

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
すなわち,縮退度は3.

2番目の励起状態は,nx,ny,nz のうち2つが2,残り1つが1というやつで,
これも3通りの可能性があるから,縮退度は3.

つまり,エネルギーを決めると,nx^2 + ny^2 + nz^2 が決まるので,
これに対応する nx,ny,nz の選び方の数が縮退度です.
一般の nx^2 + ny^2 + nz^2 を指定して選び方の数を求めるのはちょっと
複雑そうです.

幾何学的には,nx,ny,nz の3次元空間で,球の半径 nx^2 + ny^2 + nz^2 を
決めたとき,その球面が通る格子点の数はいくつか,と言う問題になっています.

通常は,a が十分大きいとして,エネルギーの連続極限をとってしまいますが,
そこらあたりまで要求されているんでしょうか?

それから,もし粒子が電子だとすると,nx,ny,nz を指定しても,
その他にスピンの自由度2があります.
スピンまで考慮すれば,縮退度は上の計算の2倍になります.

例によって答を教えてくれない先生ですか.
どうも困ったもんですね~.

同じエネルギーの値に対して状態がいくつあるかが縮退度です.
状態は 自然数の組 nx, ny, nz の組で指定されます.

最低エネルギーの状態(基底状態)はもちろん,nx = ny = nz = 1 の
ただ1通りだけ.
したがって基底状態の縮退度は1.

最初の励起状態は,nx,ny,nz のうち1つが2,残り2つが1というやつで
nx^2 + ny^2 + nz^2 = 6
ですね.
nx,ny,nz のうちどれかが2だというのだから,3通りの可能性があります.
...続きを読む

Q双極子モーメントの求め方について

薬学1回生です。有機化学の教科書で、双極子モーメントというものがあるのですが、求め方がよくわかりません。教科書にはμ=q×r(q:電荷、r:両電荷間の距離)と書いてあります。
いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?
お分かりの方がいらっしゃいましたら、詳しく教えていただけるととてもありがたいです。

Aベストアンサー

>いったいどこを見て電荷や両電荷間の距離がわかるのですか?表などがあるのでしょうか?

薬学1回生ということなので、これからいろいろ知識を獲得していかれることと思います。さて、直接的な答えにはなりませんが、参考URLの「電気陰性度と極性」のところは一読の価値があると思います。また、次のサイトも覗いてみてください。簡単な分子の双極子モーメントが与えられていたり、分子の形と双極子モーメントの関係などが載っています。
 http://www.keirinkan.com/
   ↓
  化学(2)
   ↓
 共有結合によって結びついた物質
以上、ご参考まで。

参考URL:http://www.shse.u-hyogo.ac.jp/kumagai/eac/chem/lec6-2.html

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q慣性モーメント

二酸化炭素の慣性モーメントを求める時 12×16÷(12+16)×(1.66054×10^-27)×R^2×2 でいいんですか?

Aベストアンサー

> ということはIは、6.67×10^(-46) になりますよね? そうしたら回転定数は、
> 1.05457×10^(-34)÷(4π×6.67×10^(-46))=1.26×10^10でいいんですか?

計算そのものはあっていると思うのですけど、結合距離Rが少し短いために、計算された値がちょっとずつずれているように思います。

参考URLの Experimental data によると
 R = 1.16Å = 1.16×10^(-10)m
 I = 43.2 u Å^2 = 7.17×10^(-46) kg m^2
 B = 11.7 GHz = 1.17×10^10 Hz
とのことです。

お小言:慣性モーメントや回転定数などの物理量を報告するときには、『単位をつけること』を忘れないようにして下さい。たとえば回転定数の単位には、Hzだけでなく、cm^(-1)も使われることがありますから、単位をつけないと混乱のもとになります。

参考URL:http://srdata.nist.gov/cccbdb/

Qスピンとパリティについて・・・

一人で物理の勉強をしていたらスピンとパリティという言葉が出てきたのですが、改めて何か?と、問われたら分からなくなりました。スピンについては電子や陽子などがもつ1/2の回転という事しか分からず、角運動量との関係が全然分かりません。ついでにパリティについては言葉しか聞いた事が無いので(例をつけて)簡単に教えて下さい。
こんな事質問してすみませんが宜しくお願いします!!

Aベストアンサー

量子力学では角運動量が量子化されていて,その単位が h/2π になっています.
プランク定数はよく[エネルギー・時間]の次元を持っていると言われますが,
ちょうどこれは角運動量の次元[長さ・運動量]になっています.
普通の運動(たとえば,円運動のようなもの)では角運動量は h/2π の整数倍に限られています.
ところが,電子などには空間運動の自由度の他にそれ自身がもつ内部自由度があって,
それに角運動量が付随しています.この自由度をスピンと呼んでいます.
スピンに付随する角運動量は普通の運動と違って h/2π 単位の量子化になっています.
したがって,スピン 1/2 は (1/2)(h/2π)の角運動量を持っているということです.
なお,スピンというといかにも電子が自転しているような感じを受けますが,
現在ではそういうイメージは正しくないとされています
(はじめの頃は本当に自転と思われていたようですが).

パリティとは「偶奇性」ということです.
いろいろな意味に使われますが,例を挙げましょう.
電子2個を考えましょう.
片方の電子の波動関数をψ,もう片方をφとします.
一番目の電子が状態ψにいることをψ(1)などと表すことにします.
ψ(1)φ(2)+φ(1)ψ(2) を作ってみると,1←→2の交換をしても全体の式は不変です.
これを「偶である」(even parity)といいます.
一方,ψ(1)φ(2)-φ(1)ψ(2) ですと,
1←→2の交換をすると全体の符号が変わってしまいます.
これを「奇である」(odd parity)といいます.
同種粒子が2個以上ある場合の波動関数についてはパウリ原理という制限があり,
電子では任意の2個を交換したときにパリティが奇のもののみ許される,
ということになっています.
したがって,電子2個の波動関数はψ(1)φ(2)+φ(1)ψ(2)タイプは許されず,
ψ(1)φ(2)-φ(1)ψ(2) タイプに限られる,ということになります.

量子力学では角運動量が量子化されていて,その単位が h/2π になっています.
プランク定数はよく[エネルギー・時間]の次元を持っていると言われますが,
ちょうどこれは角運動量の次元[長さ・運動量]になっています.
普通の運動(たとえば,円運動のようなもの)では角運動量は h/2π の整数倍に限られています.
ところが,電子などには空間運動の自由度の他にそれ自身がもつ内部自由度があって,
それに角運動量が付随しています.この自由度をスピンと呼んでいます.
スピンに付随する角運動量は普通...続きを読む


人気Q&Aランキング