元の大円の1/10の直径をもつ小円は、大円の中に最大何個収まるか?という問題が解けません。何卒、宜しくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

 一般論ですが、この種の問題は理論的に甘い上限、下限を示すことはできても、「これが最大個数」というのを証明することは極めて困難です。


 実際描いてみたら78個入ったというのだから、「少なくとも78入る」(下限)とは言えても、「79は絶対に無理」を証明するのは別問題。下限を改良するためには、コンピュータを使っていろいろやってみる、という方法もあります。

 たとえば、ですけど、
各円の中心点の座標を(x[i],y[i])i=1,2,....,N (Nはこの場合たとえば79)として、まず、半径10の大きい円の中にこれらをランダムにばらまきます。
各中心点iについて、他の中心点jとの距離の1/2、あるいは大きい円の円周からの距離のうち、最短のものをrとします。
 rが1よりも小さい場合には、rが大きくなる方向へこの中心点iを少し動かす。
これを全てのi=1,2,...,Nについてランダムな順番でやる。
この操作を延々と繰り返し、また「少し動かす」の「少し」の程度をだんだん小さくしていきます。

 そうすると、ひょっとすると、どの中心も動かす必要がなくなる可能性がある。そうしたらN個が収まる配置が見つかったという訳です。もし見つかったら、(これが「CADで描けた」ってレベルです。)今度はきちんと、その配置でN個が入ることを幾何学的に証明して、これで下限が改良されたことになる。旨く行かなかったらまたランダム配置を変えてやってみる。

 そういう類の問題ですんで、綺麗に解けるという訳には多分いきませんぜこれ。

 で、一番手っ取り早い方法はと言うと、実はパチンコ玉を79個持ってきて、これを玉の直径の10倍の内径を持つ円形容器に放り込んでかき混ぜてみる。がしゃがしゃやっている内に、上記の計算と同様のことが起こるわけです。
    • good
    • 0
この回答へのお礼

お返事ありがとうございます。
一見簡単な問題に思えるのですが、奥が深いんですね。実際、パチンコ玉でやってみたいと思いました。論より証拠です。

お礼日時:2001/06/25 02:27

追加。


秋山仁教授の「円詰め」(缶だったか?)の場合は、正三角形でぎちぎちにつめていたように思います。正方形を正三角形につめれば、隙間は減りますから、たくさん入ります。端が正三角形にあいているのですが。
「78個」が「正三角形」でぎちぎちに詰められているのなら、その中はそれ以上つめられないのですが、どういう形に詰まっているのでしょうか。
    • good
    • 0
この回答へのお礼

ありがとうございます。秋山仁先生の「円詰め」(私は百円玉だった記憶があります)には驚いた記憶があります。でも、数式でどうやって解くのかは分からなかった気がします。恐らく、高校生には難しすぎたのかもしれません。

お礼日時:2001/06/25 02:32

stomachman先生お久しぶりです。

5月はあまりお見受けしませんでした。(地球半径・・の質問でご登場いただけたらありがたかったですが)

最初、単純に、正3角形につめればいい、と思ったのですが、周りの隙間を上手くふさぐには、ちょっと崩す事も必要ですね。損して得取れ、ということでしょうね。
案外、計算嫌いがパチンコ玉など使って正解を出せるものかもしれません。
    • good
    • 0
この回答へのお礼

ありがとうございます。たしかに、パチンコ玉を使うのが早いのですが、理論的にも知りたいとも思いました。

お礼日時:2001/06/25 02:29

名前をど忘れしてしまったんですが数学者でひげを生やしてバンダナをはちまきにしてTVに出てる超有名人、


彼の専門分野ってこの手の問題だったと思います。

例えば2×100の長方形の中に直径1の円がいくつ入るか?
簡単に考えると200個だろうと思ってしまい勝ちですが、実はもっと多く入るのです。
実際に解答を見たことがあるのですが、ちっとも整然と並んでいませんでした。
ちょっと斜めに並んでいてそのうち列が入れ替わって…って感じで。

全然説得力の無いただの茶々入れですみません。
が、相当難しい深い問題だと思いますよ。
    • good
    • 0
この回答へのお礼

ありがとうございます。
秋山仁先生ですか。確かにこの手の問題を専門にしていらっしゃって、高校の時から読んだ記憶があります。

お礼日時:2001/06/25 02:24

ズバリ、『78個』ではないでしょうか。


外周より
1列目-28個
2列目-22個
3列目-16個
4列目- 9個
5列目- 3個
------------
合 計 78個

CADで実際に書いてみました。

ではでは☆~☆~☆
    • good
    • 0
この回答へのお礼

ありがとうございます。
残念ながらCADはもっていないのですが、他のソフトでも出来そうです。

お礼日時:2001/06/25 02:22

計算は面倒なので、いいかげんな答えを・・。


とりあえず、直径で10個並びますから、それで正6角形並べをつくるまでは簡単ですね。あと、6角形の「辺」に並んだ小円と、大円の弧の間に何個はいるか?
    • good
    • 0
この回答へのお礼

お返事ありがとうございました。

お礼日時:2001/06/25 02:21

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q三角形の面積

図のような平行四辺形ABCDにおいて三角形EBCの面積が27
三角形CDFの面積が24のとき、AF:FDを求めよという問題がありました。

答えよりも、その途中経過でわからないことがありました。

回答では、三角形ABE=三角形FCE・・・(1)
ということと三角形ABC=三角形BCF・・・(2)
ということ利用して求めてたのですが、
なんで、三角形ABE=三角形FCEなんでしょう???

三角形ABC=三角形BCFなのもなぜかわかりません。
こちらは、面積が等しいことはわかるのですが・・・

初歩的なことでもうしわけないのですが、ご助言のほどお願いいたします。

Aベストアンサー

三角形ABE=三角形FCE も 三角形ABC=三角形BCF も合同ということではなく、面積が等しい(質問者さんの理解で正しい)と思います。

この条件だけで、この問題は解けます。

△EBCの面積は、 平行四辺形の面積の半分 から △ABEの面積を引いたもの。
一方、△CDFの面積は、 並行四辺形の面積の半分 から △ACFの面積を引いたもの。

なので、△ABEの面積と△FCEの面積が同じことから、差の3は、△AEFの面積だということが分かります。

後は、△EBCと△AEFが相似であること(これは質問者さんならきっと簡単に分かりますよね)から、比が求められます。

ご参考に。

Qk= 1/a + 1/b + 1/c + 1/d <1 の最大値

a,b,c,d(a≦b≦c≦d)は自然数で,
k= 1/a + 1/b + 1/c + 1/d <1
を満たしている.
k の最大値と,そのときの a,b,c,d の値を求めたいのですが、、、。

a=2。としてよいでしょうか?

4変数の問題をn変数に変えても、a,b,c,dの値は常に等しいでしょうか?

Aベストアンサー

この問題、面白いなと思ってもう少し考えてみたのですが、
k=1/a(1)+1/a(2)+…+1/a(n)
としてkが最大になるように数列a(n)を決めていくと、
a(1)=2,a(2)=3,a(3)=7,a(4)=43,a(5)=1807,a(6)=3263443,…
となって、
a(n)=a(1)a(2)…a(n-1)+1
という漸化式を満たすようです。
積の形になっているので、a(n)は爆発的に増えていきます。

a(2)を決めるときは1/2に加えるkが1を超えない最大のものということ
で、1/3。よって、a(2)=3。これは漸化式を満たす。
そして、1/2+1/3=5/6
a(3)を決めるときは5/6に加えるkが1を超えない最大のものということ
で、1/7。よって、a(3)=7。これは漸化式を満たす。7=2×3+1。
そして、1/2+1/3+1/7=41/42
このように、ある項までの1/a(1)+1/a(2)+…+1/a(k)は、
{a(1)a(2)…a(k)-1}/a(1)a(2)…a(k)の形になっている。
そして、次に足すのは1/{a(1)a(2)…a(k)+1}である。
よって、a(k+1)=a(1)a(2)…a(k)+1

このようなメカニズムになっているようです。

この問題、面白いなと思ってもう少し考えてみたのですが、
k=1/a(1)+1/a(2)+…+1/a(n)
としてkが最大になるように数列a(n)を決めていくと、
a(1)=2,a(2)=3,a(3)=7,a(4)=43,a(5)=1807,a(6)=3263443,…
となって、
a(n)=a(1)a(2)…a(n-1)+1
という漸化式を満たすようです。
積の形になっているので、a(n)は爆発的に増えていきます。

a(2)を決めるときは1/2に加えるkが1を超えない最大のものということ
で、1/3。よって、a(2)=3。これは漸化式を満たす。
そして、1/2+1/3=5/6
a(3)を決めるときは5/6に加え...続きを読む

Q中学数学 三角形の面積の求め方と三平方の定理

三平方の定理を使った、三角形の面積の求め方について教えてください。

一辺が6cm、の正三角形の面積を求める場合、
真ん中に垂直に線ABを引いて(直角三角形が2つ)と考え、三平方の定理に当てはめると、
3の2乗+線ABの2乗=6の2乗になり、線AB=3√3になる。
三角形の面積は底辺×高さ÷2なので、6×3√3÷2になり、
面積は9√3cm2になるという問題で疑問があります。

三角形の面積は底辺×高さ÷2なので、単純に6×6÷2=18cm2ではないのですか?
直角三角形も、2等辺三角形も、正三角形も、
どんな三角形でもこのやり方で計算が出来たと思うのですが、
9√3と、18と答えが違うのはどうしてでしょうか。
9√3=√27で、18は=324になるので、9√3=18ではないですよね。

同じやり方で円錐の体積を求める計算があるのですが、同じようになってしまいます。
何か思い違いがあるのだと思いますが、何を思い違いしているのかわかりません。
なぜこうなるのか易しく教えてください。

Aベストアンサー

『三角形の面積は底辺×高さ÷2なので、単純に6×6÷2』
あなたは、正三角形の高さをどうやって求めましたか?
チョット紙に書いてみるだけでも、頂点から垂線を降ろさなければ高さは分からないですよね。
6cmは高さで無くて、一辺の長さですから、あなたはそこを勘違いしています。
直角三角形なら一辺を高さと見なせますが、直角を持たない場合は直角を作り出す作業が必要に成ります。
正しい計算法では、垂線の高さを計算で求めていて、それによって垂線と底辺とで直角を作り、2等分されて出来た二つの三角形の面積を三平方の原理から算出しています。
三角形の高さと一辺の長さは同じで無いことは簡単に分かりますね。
円錐の場合も、高さは上と同様に垂線の高さを求めなければ、計算出来ません。

Q大円の中に中円が、さらにこの隙間に大きさの同じ小円が2つ内接して三つの

大円の中に中円が、さらにこの隙間に大きさの同じ小円が2つ内接して三つの円がくっついて入っている。
隙間の部分の面積が120で中円の直径よりも小円の直径のほうが5短い。大円、中円、小円の直径を出せ。ここでは小円の直径をxとする。

Aベストアンサー

とりあえず問題を見て「何を求めればいいのか」を考えましょう。
ここに書く考え方はあくまでも私が問題を眺めて思った1つのルートなので、解答まで辿りつけない
かもしれませんがあしからず…

まず、「隙間の部分の面積が120」とあるので、「どこかで(隙間の面積)=120…(*)って式を立てるんだろうなあ」と考えられます。で、隙間の面積というのは(大円の面積)-((小円の面積)×2+(中円の面積))のことですが、後ろの項((小円の面積)×2+(中円の面積))はxで表すことができるので、「大円の面積をxで表すことができたら(*)の式を使ってxを求めることができるので、そこからそれぞれの直径は出せる」ということがわかります。
ということで、この問題は「大円の半径をxで表すことができれば解ける(円の面積は半径から求めることができる)」ことから「大円の半径をxで表す」ことが必要そうだな、ということになります。
で、中円の中心をA、小円の中心をBとC、大円の中心をOとして、各円の中心を線で結ぶと、三角形ABCはAB=ACの二等辺三角形で、直線AOはBCの垂直二等分線となります。(証明は省略します)
よって、大円の半径をrとおくと、OA,OB,OC,はrとxで表され、AB,AC,BCはxで表すことができるので、
三平方の定理などを使えばrとxによる式を立てることができ、それをrについて解くことでrをxの式で表すことができます。
ここまでくれば、後は(*)式を使ってxの方程式を作り、それを解けば終了です。

以上、参考になれば幸いです。

とりあえず問題を見て「何を求めればいいのか」を考えましょう。
ここに書く考え方はあくまでも私が問題を眺めて思った1つのルートなので、解答まで辿りつけない
かもしれませんがあしからず…

まず、「隙間の部分の面積が120」とあるので、「どこかで(隙間の面積)=120…(*)って式を立てるんだろうなあ」と考えられます。で、隙間の面積というのは(大円の面積)-((小円の面積)×2+(中円の面積))のことですが、後ろの項((小円の面積)×2+(中円の面積))はxで表すことができるので、「大円の面積をxで表すことができた...続きを読む

Q三角形ABFと三角形DEFの面積は等しいのですが、なぜですか?

三角形ABFと三角形DEFの面積は等しいのですが、なぜですか?

Aベストアンサー

辺ADと辺BEが平行なら、△ABEと△DBEの面積は等しい。
△ABF=△ABE-△FBE
△DEF=△DBE-△FBE

よって
△ABF=△DEF

Q【数学】半径×半径×πで面積。直径×πで円周。 では、直径×直径×πで導き出されるのは何ですか?

【数学】半径×半径×πで面積。直径×πで円周。

では、直径×直径×πで導き出されるのは何ですか?

Aベストアンサー

その直径の球の表面積

Q三角形の面積の求めかた

友人に頼まれ、問題を解いたのですが答えがあっているのかいまいち自信が持てません。
間違った答えを教えるのも心苦しいので、こちらで数学の得意な方に答えあわせをしていただければと思い質問を立てました。

図が表示できないので少し面倒かもしれませんが、助けてくださると嬉しいですm(_ _)m
よろしくお願いいたします


三角形ABCにおいて、AB=2√3、∠A=75°、∠B=45°である。
また、頂点Aから辺BCに引いた垂線がBCと交わる点をHとする。
この時三角形ABCの面積を求めなさい。


私は三角形ABHと三角形AHCの面積をそれぞれ求め、
三角形ABCの面積は 3+√3 になりました。

Aベストアンサー

三角形ABHの面積は
(1/2) × AH × BH
=(1/2) × √6 × √6
=3

三角形ABCの面積は
(1/2) × CH × AH
=(1/2) × √2 × √6
=√3

三角形ABCの面積は3 + √3であっています。

Q柿2個、りんご4個、みかん6個の中から6個を取り出す方法は何通りあるか

柿2個、りんご4個、みかん6個の中から6個を取り出す方法は何通りあるか?ただし、取り出されない果実があっても良い。

この問題が分かりません。

Aベストアンサー

質問者様がこの問題が分からないように私にもこの問題が何を問うものなのかが分かりません。
『6個を取り出す方法は何通りあるか?』だけでは、回答出来ないですね。
おそらく他に何かの条件が有るのだと思いますので、それを記載してほしいです・・・。

Q空間における三角形の面積は外積で求められない?

平面における三角形の面積は、外積(平行四辺形の面積)を
2で割って求められました。
空間における三角形の面積を求めようと、外積を求め2で割っても
三角形の面積になりませんでした。
なぜなのでしょうか?

Aベストアンサー

>外積=ベクトルなんでしょうか?
そうです!! ここが、質問者さんが勘違いされていたところですね。
外積と呼ばずに「ベクトル積」と呼べ(覚えれ)ば、誤解しなかったですね。
これに対し、内積はスカラー積とも呼ばれています。

参考URL:http://www12.plala.or.jp/ksp/formula/mathFormula/html/node63.html

Q白球5個、赤球2個、黒球3個の計10個を2組に分ける方法は何通りか

白球5個、赤球2個、黒球3個の計10個を2組に分ける方法は何通りか
まず、白球5個は(5,0)、(4,1)、(3,2)の3通りに分けられると考えました。
次に白球5個を(5、0)に分けた場合、赤球2個は(2,0)、(1,1)、(0,2)の3通り、黒球3個は(3,0)、(2.1)、(1,2)、(0,3)の4通りに分けられるので、計12通りに分けられると考えました。同様に、白球5個を(4,1)、(3,2)に分けた場合も赤球2個と黒球3個をそれぞれ計12通りに分けられるので、最終的に白球5個、赤球2個、黒球3個の計10個を36通りに分けられると考えました。
しかし、間違っているようです。どこか間違っているのか分かりません。アドバイスいただければと思います。よろしくお願い致します。

Aベストアンサー

10個と0個に分けた場合は2組に分けたとは言わないのでは?

答えは35通りではないですか。


人気Q&Aランキング

おすすめ情報