![](http://oshiete.xgoo.jp/images/v2/pc/qa/question_title.png?08b1c8b)
No.2
- 回答日時:
y^2=4px …(1)
(1)が(a,b)を通る → b^2=4pa …(2)
接線の傾きは(1)をxで微分して
2yy'=4p → yy'=2p → y'=2p/y
(a,b)における接線の傾きy'=2p/b …(3)
(a,b)を通る接線は
y=(2p/b)(x-a)+b → by=2p(x-a)+b^2
(2)を代入
by=2p(x-a)+4pa
by=2p(x+a) ←これが接線の方程式
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 【 数I 2次関数 】 問題 放物線y=x²-4x+3を,y軸方向に平行移動 して原点を通るようにし 4 2022/06/26 22:03
- 数学 放物線の対称移動の問題の答え方について質問があります 解く時に平方完成の形にして解くと思うのですが、 4 2022/05/30 18:17
- 数学 放物線と円の接点についてです。96(1)の、[1]で重解だと接することがよくわかりません。 xの2次 4 2022/12/24 17:59
- 数学 数学3の式と曲線の、媒介変数表示の曲線の問題で、わからない点がございます。 次の媒介変数表示された曲 3 2022/04/21 14:52
- 数学 写真の図は中心(a,b)半径rの円とその円周上の(x1,y1)における接線lと円の中心とlを結ぶ任意 4 2023/08/08 16:20
- 数学 数学直線の方程式とベクトル方程式について 直線の方程式で 点(x1,y1)を通り、直線ax+by+c 1 2022/08/12 12:13
- 数学 初歩的な質問で申し訳ないのですが、 平面における直線→y=ax+b 空間における直線→ax+b=y= 2 2022/04/01 13:22
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 焦点のx座標が3、準線が直線x=5で、点(3.1)を通る放物線の方程式を求めよという問題について質問 4 2023/07/14 00:13
このQ&Aを見た人はこんなQ&Aも見ています
-
初めて見た映画を教えてください!
初めて見た映画を覚えていますか?
-
「これはヤバかったな」という遅刻エピソード
寝坊だったり、不測の事態だったり、いずれにしても遅刻の思い出はいつ思い出しても冷や汗をかいてしまいますよね。
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
コーピングについて教えてください
皆さんはストレスを感じたとき、どのような方法や手段、テクニックで対処していますか?
-
一番好きなみそ汁の具材は?
みんなで大好きなみそ汁の具材について語り合おうよっ!
-
放物線と接線(数C)
数学
-
数IIIの放物線の問題です
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一番好きなみそ汁の具材は?
- ・泣きながら食べたご飯の思い出
- ・「これはヤバかったな」という遅刻エピソード
- ・初めて自分の家と他人の家が違う、と意識した時
- ・いちばん失敗した人決定戦
- ・思い出すきっかけは 音楽?におい?景色?
- ・あなたなりのストレス発散方法を教えてください!
- ・もし10億円当たったら何に使いますか?
- ・何回やってもうまくいかないことは?
- ・今年はじめたいことは?
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
常にf’’(x)>0とf’'(x)=0...
-
3次関数と、直線が変曲点で接す...
-
【数学】 接点が異なれば、接線...
-
数学の問題
-
y=x^3 の(0,0)における接線は
-
曲線と点の最短距離の出し方
-
円の接線について
-
傾きが同じ?
-
2次曲線が分かりません
-
円の接線はなぜ接点を通る半径...
-
数Ⅲ微分 関数f(x)がx=aで微分...
-
二次関数と三次関数の2本の共...
-
数学の問題で、わからないので...
-
「接する」の厳密な定義とは?
-
【数学】一次関数、二次関数、...
-
高校数学での接線についての質...
-
微分方程式
-
折れ線と曲線との違い、多角形...
-
円の外の点から円に2本接線を引...
-
極方程式におけるr^2の意味
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
Excelでこの直線と曲線が離れ出...
-
常にf’’(x)>0とf’'(x)=0...
-
曲線と点の最短距離の出し方
-
エクセル2007曲線の接線と傾き...
-
円の接線はなぜ接点を通る半径...
-
円の外の点から円に2本接線を引...
-
3次関数と、直線が変曲点で接す...
-
曲線y=xの3乗+3xの2乗-2につい...
-
理解しがたい部分があります。...
-
「接する」の厳密な定義とは?
-
漸近線と接線のちがいについて
-
数学の問題です。
-
半径3の円1と半径1の円2の共通...
-
微分
-
【数学】 接点が異なれば、接線...
-
傾きが同じ?
-
円の接線
-
y=x^3 の(0,0)における接線は
-
円と接線の関係はどうやって証...
-
極方程式におけるr^2の意味
おすすめ情報