パワースペクトルについて説明してくださいと先生に言われました。
全くわからない人に説明するので端的にわかりやすく説明したいのですが誰かできる人はいませんか?ちなみにぼくも詳しいことは全然わかりません。
本などを見ても式があったりしてそれをまた理解することが出来ません。
なんかイメージがわくような方法はないですかね?

A 回答 (3件)

スペクトルとは、独立な成分それぞれについての強さをグラフにしたものです。


光の場合、光の種類を色で分類する事ができます。光といっても、その中に青はどれくらい、オレンジはどれくらいとそれぞれの色に応じて強さがあります。
光をそれぞれに分ける方法は、たとえばプリズムがあって、光をプリズムに通すといろいろな色にわかれてみえます。

ニュートンはプリズムを使った実験で有名です。一つ目のプリズムで光を分光し、赤と青の光を残して他の光を遮り、赤と青を二つ目のプリズムやレンズで一つにまとめました。その後でもう一度プリズムを通すと、いったんまとめたのにやはり赤と青しかでてこないのです。これから光の色の独立性(赤や青は、混ざらないものとして独立に扱って良い、ということ)がわかります。

このように色にはそれぞれを別々に扱ってもよいので、色ごとに物事を考えると分かりやすくなります。この色ごとについての強度を「光のスペクトル」、といいます。
強度はふつう「時間当たりに光りが運ぶエネルギー」(パワー)で表すので、この時は「パワースペクトル」です。

こんなふうに物事を自然な「成分(光の時は色)」にわけて考えた物がスペクトルです。詳しくは座標とフーリエ成分の関係について(フーリエ変換について)勉強するといいと思います(電磁場の実空間の振動とフーリエ空間上での振動の対応として)。
    • good
    • 2

nikorinさんの回答への補足です。


フーリエ変換をすると、ある特定の周波数(周期)に対して、SINとCOSの2つの係数が計算されます。この2つの係数のそれぞれを2乗して加算し、その結果の平方根をとったもの(これが絶対値です)をその周波数での信号強度(パワー)といいます。
このパワーを観測した周波数軸に沿ってならべたものを、パワースペクトルといいます。
    • good
    • 3

一言で言ってしまえば「強度の周波数分布」です。


何らかのデータ(時系列分布や空間分布)があって、それのフーリエ変換の絶対値の二乗を
パワースペクトルといいます。
いろいろな分野で使われる言葉ですので、どういった分野での「パワースペクトル」なのか、
もう少し具体的に質問されるとよいのではないでしょうか。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QFFTとパワースペクトルの違いについて教えてください。

FFTとパワースペクトルの違いについて教えてください。
勉強不足で申し訳ありません。よろしくお願いします。

Aベストアンサー

信号をFFTで出したスペクトルというのは、
単にある信号をフーリエ展開した係数をプロットしたものに過ぎません。
ですので、位相によっては値がプラスにもマイナスにもなることがあります。

これに対してパワースペクトルというのは、信ある信号について
ある周波数における信号強度そのものをプロットしたものです。
ですので、位相にかかわらずかならず値がプラスになります。

確かFFTスペクトルを2乗したものがパワースペクトルになったと思います。
間違ってるかもしれないので、一応教科書も調べてみてください。

QFFT・PSDの縦軸は何を意味するのでしょう?

加速度計測の結果について、PSD(パワースペクトラムデンシティ)をかけた場合、その縦軸の意味を教えてください。
また、FFTとPSDはどういう違いが有るのでしょうか?
これまでは、周波数の分布のみに着目していました。
どなたか、わかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

一般に加速度センサー信号の出力は電圧です。

縦軸は係数をかけていない状態では#1さんがおっしゃるように計測した電圧の値を示しています。

よって、縦軸に物理的な意味を持たせるのには、電圧と加速度の間の換算係数をかけてやる必要があります。

フーリエ解析は時刻歴波形は正弦波の組み合わせで構成されるという仮定の下で計算を行っています。FFTの結果は横軸で示される周波数の正弦波の振幅を示しています。
電圧と加速度の換算係数をかけてやると、FFTの縦軸はその周波数成分を持つ加速度振幅を示しています。

ここで1つ問題があります。FFTはサンプリング周波数により分解能が変わります。FFTによる周波数分析は正確にいうと、離散値なので、ジャストの周波数のもをだけを表しているのではなく、ある範囲の周波数範囲にある成分を表しています。
このため分解能が変わると周波数範囲が変わり、同じ波形を分析しても振幅が変わります。
これでは分解能が異なるデータ同士は比較できないなどの問題が生じます。
そのため、周波数幅で振幅を基準化して、1Hzあたりの振幅としたものがPSDです。
PSDならサンプリング周波数が異なるデータ同士の比較ができます。

要はフーリエ振幅(FFT)はサンプリング周波数・分解能により変わる値であり、PSDはそのようなことのないように周波数幅で基準化した値という差があります。

なお、2乗表示したものをパワースペクトルと呼び、それを周波数で基準化したものをPSDと呼びますが、PSDは表示方法によって2乗した状態のあたいを表示(パワー表示)するときと、2乗した値の平方根を計算して表示することがありますので、使用する際には縦軸の表示方法については要注意です。

一般に加速度センサー信号の出力は電圧です。

縦軸は係数をかけていない状態では#1さんがおっしゃるように計測した電圧の値を示しています。

よって、縦軸に物理的な意味を持たせるのには、電圧と加速度の間の換算係数をかけてやる必要があります。

フーリエ解析は時刻歴波形は正弦波の組み合わせで構成されるという仮定の下で計算を行っています。FFTの結果は横軸で示される周波数の正弦波の振幅を示しています。
電圧と加速度の換算係数をかけてやると、FFTの縦軸はその周波数成分を持つ加速...続きを読む

Qパワースペクトルからピーク周波数を読み取りたい

パワースペクトルのピーク周波数について
添付ファイルのパワースペクトルのピーク周波数を読み取りたいのですが、ピーク周波数とは一番振幅値が高い個所のことでしょうか。
ピーク周波数を答える場合は、振幅値の16と解答すべきでしょうか。
よろしくお願いいたします。

Aベストアンサー

 どのような信号を、どのような条件で計測した結果をスペクトル分析したのかよくわかりませんが、正しく計測されたもの(ノイズや原信号以外の成分を含まない)であれば、

「ピーク周波数とは一番振幅値が高い個所」

ということです。「パワースペクトル」とは、そういった「周波数の分布」(周波数ごとのパワー=信号強度の分布)を分析して、「卓越した周波数」を求めるためのものですから。

 グラフを見る限り、

「最大のピーク周波数は6Hz」

ですが、スペクトル全体からは「2Hz、5~7Hz、19Hz、26Hz付近にピークがある」ということが言えると思います。
 ただし、元の信号には「誤差」や「統計的なバラツキ」も含まれていますし、ひょっとすると何らかの「ノイズ」を含んでいる可能性もありますので、読み取りに当たっては誤ったピーク周波数の判断をしないように、いろいろと考察してみることも必要と思います。

 

Qフーリエ変換について教えてください

フーリエ変換をすると横軸が時間から周波数になるのはわかったのですが、縦軸が何になるのかわかりません。

一般的に縦軸はなにになるのでしょうか?

また横軸が時間で、縦軸が距離をフーリエ変換したら縦軸は何になるのでしょうか?

よろしくお願いします。

Aベストアンサー

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が時間で縦軸が距離の場合・・・
フーリエ変換の結果は、距離を表す時間関数の周波数成分です。

フーリエ変換の対象の関数は別に時間関数でなければならないということは
ありません。従って、フーリエ変換の結果は適用する人が解釈(定義)すれば
よいと思います。
たとえば、
時間関数をフーリエ変換し、その結果の絶対値の対数のフーリエ変換を
することもあります。これの結果には、発明者らがケプストラムという名前
をつけています。Cepstrum は Spectrum から作った造語です。

時間関数をフーリエ変換すると結果は、その時間関数の周波数成分が
得られます。スペクトルとも言います。従って、縦軸は、周波数成分です。一般に複素数です。
大きさと偏角による表現もできます。
大きさの方は振幅特性、位相角の方は位相特性と呼ばれます。
画像のように空間座標の上の関数の場合には、フーリエ変換すると
空間周波数成分が得られます。横軸は、空間周波数(2次元)となります。
対象とする関数により結果はそれぞれ意味が異なります。
「一般に何になる」とは言えません。

>横軸が...続きを読む

Qパワースペクトル密度 エネルギースペクトル密度

信号のパワースペクトル密度とエネルギースペクトル密度とは何なんですか?調べてみましたがよく分かりません。
それぞれの違いや関係についても知っている方いらっしゃいましたら、どうか教えてください。
よろしくお願いします。

Aベストアンサー

原理的な話をします.
まず,時間波形x(t)の絶対値の2乗|x(t)|^2を全時間範囲(-無限大<t<無限大)に渡って積分したものは,その波形の全エネルギーです.
一方,|x(t)|の全時間範囲に渡る積分値が存在するのなら,x(t)はフーリエ変換可能ですが,そのx(t)のフーリエ変換X(f)の絶対値の2乗|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分したものは,実はx(t)の全エネルギーになるという有名な定理(Parsevalの定理)があります.

ということは,このときの被積分関数|X(f)|^2は単位周波数あたりのエネルギーを表していることになるでしょ.これ(|X(f)|^2)がエネルギースペクトル密度と呼ばれるものです.

ところで,実世界の多くの波形(不規則波形など)は,無限の時間範囲に渡って存在するので,その全エネルギーは一般には無限大となり,上記のエネルギースペクトル密度は定義(計算)できません.

そこで,そのような波形に対しては,|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分するだけではなく,その積分値の時間平均を考えます.すなわち被積分関数|X(f)|^2/2Tを時間範囲2T(-T<t<T)に渡って積分して,さらにTを無限大にした量を考えます.この量は,単位時間当たりのエネルギーを表しますから,パワーと呼ばれる単位を持ちます.これがパワースペクトル密度と呼ばれるものです.

衝撃波形などは,無限大の時間範囲に渡っては波形が存在しないので,エネルギースペクトル密度を求めることができます.一方不規則波形などは,上述のとおり,エネルギースペクトル密度を求めることはでなくて,代わりにパワースペクトルという量で議論する必要があります.

原理的な話をします.
まず,時間波形x(t)の絶対値の2乗|x(t)|^2を全時間範囲(-無限大<t<無限大)に渡って積分したものは,その波形の全エネルギーです.
一方,|x(t)|の全時間範囲に渡る積分値が存在するのなら,x(t)はフーリエ変換可能ですが,そのx(t)のフーリエ変換X(f)の絶対値の2乗|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分したものは,実はx(t)の全エネルギーになるという有名な定理(Parsevalの定理)があります.

ということは,このときの被積分関数|X(f)|^2は単位周波数あたり...続きを読む

Qフーリエ変換など。スペクトルの図を見て何がわかるのか?

理系の大学生です。院試のためフーリエ変換などを復習しています。
そして恥ずかしながらスペクトルの図の表すものが何なのかよくわかりません。

スペクトルの図を書く方法はわかるのです。
フーリエ変換の計算方法もわかります。フーリエ級数展開もできます。
ただ、スペクトルの図をみて何がわかるのかがよくわかりません。

例えば、ある関数を微分して導関数の図を描くとするじゃないですか。
すると導関数の値が正になってれば元の関数は傾きが正とか、
つまり導関数の図を見て読み取れることがありますよね。
同様にスペクトルの図を描けば、描いた以上元の信号について読み取れることがあるはずですよね。
それが何なのかよくわかりません。
イメージとしては↓のURLをご参照ください。
http://laputa.cs.shinshu-u.ac.jp/~yizawa/InfSys1/basic/chap2/index.htm

よろしくお願いいたします。

Aベストアンサー

>フーリエ変換の計算方法もわかります。フーリエ級数展開もできます。
>ただ、スペクトルの図をみて何がわかるのかがよくわかりません。

フリーエの原理そのものだよ。「任意の周期関数は、正弦波の和で表される」ということ。時間軸の波形を周波数軸のスペクトラムにフーリエ変換すると、時間軸上の波形に、周波数ωの正弦波がA1の振幅で、周波数2ωの正弦波がA2の振幅で、...、周波数nωの正弦波がAnの振幅で含まれていることがわかる。

http://cp.literature.agilent.com/litweb/pdf/5988-6765JA.pdf
の6ページを参照。

数学のみではなく、実際のアプリケーションにも目を向けると世界が広がるよ。

Qパワースペクトル密度を加速度に換算できますか?

ランダム振動でパワースペクトル密度がありますが、これをサイン振動における加速度に換算することはできますでしょうか?
パワースペクトル密度で示された振動が、どれくらいのレベルの振動なのか直感的に理解できず、このように考えました。
または、なにか近似して考える方法はありますでしょうか?

Aベストアンサー

 A=(PSD*B)^(1/2)
     A:振幅[m]
     PSD:パワースペクトル密度[G^2/Hz]
     B:バンド幅[Hz]

計算方法は上記のものでよいと思います。

>なお、Aは全振幅(複振幅)と理解しております。

これは表示上の問題なので、どちらか判断できません。私は通常片振幅(0-p)で利用しています。

Gかm/s^2かは計測条件により変わりますので、どちらか判断できません。単純に係数だけの問題ですし。

Qフーリエスペクトルの振幅について

ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの
振幅値について教えて下さい。

今想定している離散フーリエ変換の式は一般的なもので
Σ(k=0~N-1) f(k)exp(-2πkni/N)
を考えています。
また、離散フーリエ変換して得られるスペクトルは
√(Re^2+Im^2)
で計算します。

離散フーリエ変換を適用する関数を、
振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。
(この2つの信号は別々の信号で合成されていません。)
サンプリング周波数を20[Hz]とした場合、
サンプリングして得られるデータ列はそれぞれ、
直流: 「1, 1, 1, 1」
正弦波: 「0, 1, 0, -1」
となると想定されます。
(正弦波をサンプリングする場合は位相が関わってきますが、
今回は気にしないで下さい。)

このデータ列に対して上記の離散フーリエ変換を適用した場合、
得られるフーリエスペクトルの振幅値はそれぞれ、
直流: 「4」(直流のフーリエスペクトルの振幅値値)
正弦波: 「2」(5[Hz]のフーリエスペクトルの振幅値)
となります。
(データ点数は上の通り4点)

ここで質問なのですが、
離散フーリエ変換して得られるスペクトルの振幅値から
元の関数の振幅値を求める場合、
フーリエスペクトルをサンプリングの総データ点数で割ることは
数学的に納得できます。
しかしこの例の場合、フーリエスペクトルを総データ点数で割ると、
直流: 「4 -> 1」
正弦波: 「2 -> 0.5」
となってしまい、直流は正しいのですが、
正弦波の元の振幅値を正確に求めることは出来ません。
フーリエスペクトルの振幅値から正弦波の振幅値を正しく求めるには、
「フーリエスペクトルの振幅値*2/データ点数」
としてやらなければいけません。

上記のことに関して、
なぜこのようになるのかを(2をかける理由を)教えて頂けないでしょうか。

ある時間関数を離散フーリエ変換して得られるフーリエスペクトルの
振幅値について教えて下さい。

今想定している離散フーリエ変換の式は一般的なもので
Σ(k=0~N-1) f(k)exp(-2πkni/N)
を考えています。
また、離散フーリエ変換して得られるスペクトルは
√(Re^2+Im^2)
で計算します。

離散フーリエ変換を適用する関数を、
振幅1の直流、及び振幅1で周波数5[Hz]の正弦波とします。
(この2つの信号は別々の信号で合成されていません。)
サンプリング周波数を20[Hz]とした場合、
サンプリングし...続きを読む

Aベストアンサー

離散フーリエ変換というのは、実質離散フーリエ級数展開なので、
フーリエ級数展開を考えます。

f(t) = a0/2 + Σ[n=1→∞] { an cos (nωt) + bn sin (nωt) }

f(t)の周期をTとして、ω=2π/Tです。

直流成分の振幅といっているのはこの第1項a0/2のことで、
サイン成分の振幅はbnのことです。

問題文の離散フーリエ変換の式

>Σ(k=0~N-1) f(k)exp(-2πkni/N)

は複素フーリエ級数展開なのでオイラーの公式

cos nωt = [e^{inωt}+e^{-inωt}]/2
sin nωt = [e^{inωt}-e^{-inωt}]/2i = = -i [e^{inωt}-e^{-inωt}]/2

を使って書き直すと、

f(t) = a0/2 + Σ[n=1→∞] { ([an -i bn]/2) e^{nωt} + ([an +i bn]/2) e^{-inωt} }

an = a(-n), bn = -b(-n)の関係があるので、

cn = ([an -i bn]/2), c(-n) = ([an +i bn]/2)

と置くことができ、a0/2をc0と定義し直せば、

f(t) = Σ[n=-∞→∞] cn e^{nωt}

したがって、複素フーリエ係数が求めているのはcn = (an-ibn)/2で、その実数部はan/2、虚数部は-bn/2です。

こうなる理由は、サイン、コサインのときは正の整数だったnを複素数で取り扱うときにマイナス側に拡張したことで、同じ係数が+側と-側にわかれたためです。

離散的な場合は和が-N/2~N/2の範囲の有限項で打ち切られ、
-N/2~0の範囲が一周期ずらされてN/2~Nになっています。

離散フーリエ変換というのは、実質離散フーリエ級数展開なので、
フーリエ級数展開を考えます。

f(t) = a0/2 + Σ[n=1→∞] { an cos (nωt) + bn sin (nωt) }

f(t)の周期をTとして、ω=2π/Tです。

直流成分の振幅といっているのはこの第1項a0/2のことで、
サイン成分の振幅はbnのことです。

問題文の離散フーリエ変換の式

>Σ(k=0~N-1) f(k)exp(-2πkni/N)

は複素フーリエ級数展開なのでオイラーの公式

cos nωt = [e^{inωt}+e^{-inωt}]/2
sin nωt = [e^{inωt}-e^{-inωt}]/2i = = -i [e^{inωt}...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング