プロが教えるわが家の防犯対策術!

500点近くのデータを採取しました。
「正規分布のグラフ化」
って言われたのですが、頭にはかけらも残ってません。どなたか、わかりやすく説明していただけるとたすかるのですけど・・・。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

すみません。

誤字を訂正します。

まちがい
標準と標準偏差を求めて

訂正後
平均と標準偏差を求めて

まちがい
わかわからなく

訂正後
わけわからなく
    • good
    • 0
この回答へのお礼

そのとおりです。
標準偏差と平均を求めて、2σや3σの値が期待値とどうなのかってことでした。
なんとかなりそうです。
ありがとうございました。

お礼日時:2004/06/21 18:37

「正規分布だと思ってグラフにしてみなさい。

正規分布みたいな形をしていることを確かめなさい。」ということですか、おそらく。
それで、データは2個1組とかでなく、単に数字が500個あるということですか、おそらく。

それは
第1問「ヒストグラムを作りなさい」
第2問「標準と標準偏差を求めて、そのヒストグラムに図示しなさい」
ということでしょう。

ヒストグラムは、数字を大きさの段階ごとに仲間わけしてあげて棒グラフにするものです。
例えば身長の統計の場合、身長の刻みを10センチにするとか5センチにするとか1センチにするとかありますが、細かくしすぎると、ただの凸凹道に見えちゃって、正規分布だかなんだか、わかわからなくなってしまいます。
かといって、刻みを粗くしすぎると、長い棒が3本ぐらいしか立たなくなり、正規分布っぽいかどうかがわからなくなります。
工業関係の人が読むQCの本に、刻みの間隔のうまい決め方(計算方法)が書いてありましたが、式は忘れました。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。


人気Q&Aランキング