ここから質問投稿すると、最大4000ポイント当たる!!!! >>

鉄2価から3価に変わる反応について。

この反応は酸化だと教科書に乗っていましたが、
電子イオンを得るのって還元反応じゃなかったですっけ?
ややこしくてわからなくなりました。
お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

2+から3+に変化する


=電子を1個失う。
ですよ。
電子はマイナスだから一個電子を失う=+1
です。ちょっとややこしいですよね。
それと、酸化数で見たらわかりやすいかもです。
たしか、イオンの場合の酸化数は価数ですよね。
2→3に酸化数ふえているので酸化です。
    • good
    • 5
この回答へのお礼

なるほど!
解説ありがとうございます!

お礼日時:2016/03/15 14:29

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q鉄イオンになぜFe2+とFe3+があるの?

イオンに価数の違うものがあるという現象が理解できません・・・。

例えば、水素イオンだったらH+しかありませんよね。電子を一つ外に出した方が安定だから。

でも、鉄イオンにFe2+とFe3+があるじゃないですか!!

じゃあ、このイオンたちは外に電子を二つだしても、三つだしても安定なのでしょうか。変です。安定状態は一つじゃないんですか。あの最外核電子が希ガスと同じになると安定。

仮に安定状態にかかわらずイオンになれるんだとすれば、Fe+~Fe10+とかいくらでもありそうな気がするのです。でも、鉄の場合はFe2+とFe3+くらいしか聞かないですし、水素の場合のH2+も聞きません。どうしてでしょう(-_-;

Aベストアンサー

イオン化エネルギー(単位はkJ/mol)

H  1312

Na 495  4562  6911
Mg 737  1476  7732

K  419  3051  4410
Ca 589  1145  4910

He  2373  5259
Ne  2080  3952
Ar  1520  2665 

1.不活性元素(希ガス)の電子配置から先に行くのは難しいのが分かります。
  Na^2+は存在しないだろうというのはエネルギー的な判断として可能です。

2.Ca^2+を実現するために必要なエネルギーはNa^+を実現するために必要なエネルギーよりも2倍以上大きいです。でもCa^2+は安定に存在します。これはイオン化エネルギーの大きさだけでは判断できない事です。
CaOとNaClは結晶構造が同じです。融点を比べると結合の強さの違いが分かります。
NaCl 801℃   CaO  2572℃

CaOの方が格段に結合が強いことが分かります。
結合が強いというのを安定な構造ができていると考えてもいいはずです。
NaClは(+)、(-)の間の引力です。CaOは(2+)、(2-)の間の引力です。これで4倍の違いが出てきます。イオン間距離も問題になります。Ca^+には最外殻のs軌道に電子が1つ残っていますからCa^2+よりも大きいです。荷電数が大きくてサイズの小さいイオンができる方が静電エネルギーでの安定化には有利なのです。
Fe(OH)2よりもFe(OH)3の方が溶解度が格段に小さいというのも2+、3+という電荷の大きさの違いが効いてきています。サイズも小さくなっています。

イオンは単独では存在しません。必ず対のイオンと共に存在しています。
水和されていると書いておられる回答もありますが対のイオンの存在によって安定化されるというのが先です。
水溶液の中であっても正イオンだけとか負イオンだけとかでは存在できません。水和された正イオンと水和された陰イオンとが同数あります。水和された負イオンの周りは水和された正イオンが取り囲んでいます。液体の中にありますからかなり乱れた構造になっていますが正負のイオンが同数あって互いに反対符号のイオンの周りに分布しているという特徴は維持されています。

3.d軌道に電子が不完全に入っている元素を遷移元素と呼んでいます。
  「遷移」というのは性質がダラダラと変わるということから来た言葉です。普通は族番号が変われば性質が大きく変わります。周期表で横にある元素とは性質が異なるが縦に並んでいる元素とは性質が似ているというのが元素を「周期表の形にまとめてみよう」という考えの出発点でした。だから3属から11族を1つにまとめて考えるという事も出てくるのです。
 性質が似ているというのは電子の配置に理由があるはずです。電子は最外殻のsに先に入って後からdに入ります。エネルギーの逆転が起こっていますが違いは小さいものです。まず外の枠組み(s軌道)が決まっている、違いは内部(d軌道)の電子の入り方だけだというところからダラダラ性質が変わるというのが出てきます。M^2+のイオンがすべて存在するというのもここから出てきます。11族の元素に1+が出てくるのは内部のd軌道を満杯にしてs軌道電子が1つになるというからのことでしょう。これは#7に書かれています。でもそれがなぜ言えるのかはさらに別の理由が必要でしょう。
 s軌道の電子が飛び出してイオンができたとすると残るのはd軌道の電子です。イオンのサイズがあまり変わらないというのはここから出てきます。
 イオンの価数の種類が1つではないというのも遷移元素の特徴です。エネルギーにあまり大きな違いのないところでの電子の出入りだという捉え方でもかまわないと思います。イオン単独で考えているのではなくてイオンが置かれている環境の中で考えています。イオン化エネルギーの大小だけではありません。
 色が付いている化合物が多いというのもエネルギー的にあまり大きな違いのない電子配置がいくつか存在する、そのエネルギー状態は周囲の環境によって割合と簡単に変化するという事を表しています。普通なら電子遷移は紫外線の領域です。可視光の領域に吸収が出るのですから差の小さいエネルギー準位があるという事です。この色が周りに何があるかによって変化するというのも、変動しやすいエネルギー順位があるという証拠になるのではないでしょうか。酸化銅、硫酸銅、塩化銅、硝酸銅、結晶の色は異なります。水和された銅イオン、アンモニアが配意した銅イオンもはっきりとした色の違いがあります。

4.今考えているイオンの電荷は実電荷です。酸化数は実電荷に対応しているとは限りません。
 単原子イオンの酸化数はイオンの価数そのままですが、単原子イオンではない、分子中の原子、または多原子イオンの中の原子の酸化数は形式的に電荷を割り振ったものです。イオンでないものであってもイオンであるかのように見なしているのです。「Cr^(6+)」が存在するなんて書かれると「????」となってしまいます。Cr2O3の融点が2436℃、CrO3の融点が196℃であるという数字から考えるとCrO3はイオン性ではありません。無水クロム酸とも言われていますがCrO4^2-の中の結合と同じであろうと考えられます。
 CO2はC^(4+)1つとO^(2-)2つが結合したものと教えている中学校があるように聞いていますが困ったことです。「硫酸の中の硫黄の原子価は6+である」と書いてある危険物のテキストもあります。酸化数と原子価の混同はかなり広く見られることのようです。Cr^6+ という表現はそれと同列のことですから堂々と回答に書かれては困ることです。

イオン化エネルギー(単位はkJ/mol)

H  1312

Na 495  4562  6911
Mg 737  1476  7732

K  419  3051  4410
Ca 589  1145  4910

He  2373  5259
Ne  2080  3952
Ar  1520  2665 

1.不活性元素(希ガス)の電子配置から先に行くのは難しいのが分かります。
  Na^2+は存在しないだろうというのはエネルギー的な判断として可能です。

2.Ca^2+を実現するために必要...続きを読む

Q3価鉄が2価鉄になる反応について

食物中の Fe3+ が胃酸によって Fe2+ になって、腸管から吸収されるとのことですが、これはどういった化学反応によるものなのでしょうか?
具体的な化学反応式をご教授いただけたら幸いです。
よろしくお願いいたします。

Aベストアンサー

胃酸はかなり強力な酸ですが (本体は塩酸),酸化力はありません.というか,酸と酸化は無関係です.
「胃酸によって Fe2+ になる」というのは,その部分だけ見ればまったく意味不明です.上述のように胃酸の酸としての本体は塩酸ですが,塩酸によって Fe3+ が Fe2+ に還元されることも,逆に Fe2+ が Fe3+ に酸化されることもありません.
胃酸の関与が考えられるとすれば,こんな形でしょうか?
Fe3+ は中性環境下ではイオンとして溶存できません.不溶性の水酸化物等になってしまいます.強酸性下でまず Fe3+ の状態で胃液中に溶け出し,それが他の食物中のアスコルビン酸 (ビタミンC) 等によって Fe2+ に還元される,と.Fe2+ になってしまえば強酸性でなくても溶存できるので,この状態で鉄タンパクに取り込まれるというのはありそうです.

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qヘモグロビン中の鉄イオンについて

大学の授業で、
ヘモグロビン中の鉄IIイオンは酸素とゆるく結合して
酸化されることはないと習いました。
鉄IIイオンの塩は、酸素が溶けた水中では速やかに酸化されるのに
なぜヘモグロビン中の鉄IIイオンは酸化されないのでしょうか?

あまり頭が良くないので誰かわかりやすく教えて下さい。
よろしくおねがいします。

Aベストアンサー

鉄を酸化するということは一方で酸素を還元しなければなりません。つまり酸素を還元するためのプロトン源が必要になります。
鉄の塩では、水中にたくさんのプロトンがありますから酸素は常に活性化されており容易に酸化還元が進行します。

さてここから説明をするには少し高度な知識が必要になってしまいますが、
まず多くのヘム系酵素の金属中心の周りには4配位のポルフィリンという平面配位子がついています。
またそのポルフィリン平面の軸方向にはヒスチジン(又はシステイン)というアミノ酸のイミダゾールが配位しています。

このためヘモグロビン、(ミオグロビン)のイミダゾールのNが鉄に対して電子を供与しているため、その反対側のO2が配位すべき空軌道の広がりが小さく、これが「ヘモグロビン中の鉄IIイオンは酸素とゆるく結合している」原因です。
わざわざなぜこんなことしているかというと、反応終了後の酵素上にいつまでも酸素の残存物が残っていても困るからです。

一方で酸素が配位する側の空間の近くには、遠位のヒスチジンがあります。この遠位のヒスチジンは鉄に配位こそしていないものの、酸素が鉄に配位した際にその酸素にプロトンを供給し酸素を活性化すると言う大事な役目を担っています。
これはミオグロビンの他ペルオキシダーゼやP450などの一般的なヘム系酵素にも通用する酸化還元活性機構なのですが、問題はミオグロビンではこの遠位のヒスチジンが、酸化還元活性の高いにペルオキシダーゼやP450に比べ、配位後の酸素分子に近づきすぎるのです。
このため酸化還元活性をあげるのではなく、鉄と酸素分子がいつまでもただ配位している状態を安定化させる方向に働いてしまい(この理由は双極子モーメントなどを考える必要がありここでは割愛します。)、十分な活性を得られないのです。

同じような構造を持った酵素でありながら、このようなたった少しの構造の違いによって巧みに働きを変えているのですから、すごいものですよね。

近年はミオグロビンタイプのヘム鉄ミュータントで酸化還元をする試みもあり、その第一人者のページの研究リンクをつけ加えときます。
内容が少々高度ですが。
ttp://bioinorg.chem.nagoya-u.ac.jp/jp/myoglobin.pdf

長々とごめんなさい。

鉄を酸化するということは一方で酸素を還元しなければなりません。つまり酸素を還元するためのプロトン源が必要になります。
鉄の塩では、水中にたくさんのプロトンがありますから酸素は常に活性化されており容易に酸化還元が進行します。

さてここから説明をするには少し高度な知識が必要になってしまいますが、
まず多くのヘム系酵素の金属中心の周りには4配位のポルフィリンという平面配位子がついています。
またそのポルフィリン平面の軸方向にはヒスチジン(又はシステイン)というアミノ酸のイミダゾー...続きを読む

Qキレート剤とは?。

キレート剤とはどのようなものなのでしょうか?。
そしてどのようなところに利用されているのでしょうか?。
教えてください。

Aベストアンサー

無電解銅めっき液に関して、キレート剤が関与するのは、銅イオンの可溶化、溶解生の安定化が大きな作用と思います。通常、無電解銅めっき液は、アルカリ性であるため、銅イオンは容易に水酸化物となって沈殿してしまい、めっき液が成立しません。そのため、EDTA(エチレンジアミン四酢酸のナトリウム塩)や、クエン酸、酒石酸などのオキシカルボン酸塩(ナトリウム塩など)を配合して、めっき液を調製します。このままでは、金属が析出しないため、ホルマリンや次亜燐酸塩などの還元剤を使用して金属を析出させます。
また、アンモニアは、銅イオンと容易に結合し「銅アンモニア錯イオン」を作り、めっき液に重要なファクターとなっています。アンモニアは、キレート剤、pH緩衝剤の両者に有効に働いていると思います。
キレート剤には、広い意味があるため一言での説明は難しいです。
一般的には、可溶化、安定化作用を利用して、溶液の調製に使用されますが、ある種の金属と特異的に結合する性質を持つ物は、沈降剤(排水処理など)、金属回収(キレート樹脂による交換など)に利用されています。
また、金属イオンと結合し(錯体を形成)することにより、元の金属の特徴を変化させることが可能となるため、電気メッキにおいても合金メッキに利用されています。この場合は、析出電位が大きく異なる異種金属の析出電位を近づける事が可能となり、合金皮膜として析出させることができます。また、めっき液の金属溶解安定性を維持することにも寄与しています。
回答になっていなかったらごめんなさい。参考になったでしょうか?                           

無電解銅めっき液に関して、キレート剤が関与するのは、銅イオンの可溶化、溶解生の安定化が大きな作用と思います。通常、無電解銅めっき液は、アルカリ性であるため、銅イオンは容易に水酸化物となって沈殿してしまい、めっき液が成立しません。そのため、EDTA(エチレンジアミン四酢酸のナトリウム塩)や、クエン酸、酒石酸などのオキシカルボン酸塩(ナトリウム塩など)を配合して、めっき液を調製します。このままでは、金属が析出しないため、ホルマリンや次亜燐酸塩などの還元剤を使用して金属を析出さ...続きを読む

Q塩酸に鉄を入れて溶けていくと液の色が緑色になるのは?

小学校で「水溶液の性質」という単元の学習があります。塩酸がアルミニウムや鉄を溶かすことは理解させることができたのですが、鉄を溶かすことを理解させるために前日から鉄をつけておくと塩酸の液の色が緑色に変色しますよね。子どもから「なぜ緑色になるのですか?」という質問があり、答えに窮してしまいました。どなたかその理由を教えていただけないでしょうか?お願いします。

Aベストアンサー

鉄は水に溶けている時はイオンとして存在します。
そのイオンに色が付いているんです。
鉄イオンには,鉄(II)イオンと鉄(III)イオンの2種類があります。
そのうち、鉄(II)イオンは緑色を示します。
鉄(III)イオンは黄褐色,その他にも銅イオンは青,マンガンイオンはピンク
のように、金属イオンには色が付いているものがあるんです。

Q原核生物と真核生物

原核生物と真核生物の遺伝情報発現機構の相違点について分かることがあれば教えて下さい。

Aベストアンサー

結構たくさんあるのですが。

まず、転写。原核生物も真核生物もはRNAポリメラーゼがDNAを転写しますが、原核生物はイントロンを含まないmRNAができます。真核生物はエキソン(タンパク質コードする領域)とイントロン(コードしない領域)を含むmRNA前駆体なるものを作ります。この前駆体はスプライシングという操作を受けて、イントロンが切り離されます。さらに、5'末端にキャップ構造を、3'末端にアデニンがたくさん連なったpolyAを付加されます。これで真核生物のmRNAが完成します。

原核生物は核を持たないので細胞質で直接転写が行われ、その場でリボソームにより翻訳されます。しかし、真核生物は核で転写が行われるため、リボソームが翻訳をするためには核の外にmRNAが出ないといけないのです。キャップ構造は、核の外に出ていいよというシグナルの役割を果たすといわれています。

また、原核生物ではひとつのmRNAが複数の関連のあるタンパク質を同時にコードしているポリシストロン性が見られますが、真核生物では通常ひとつのmRNAからは一種類のタンパク質しかできません(モノシストロン性)。原核生物はこうして複数のタンパク質を同時に発現することですばやく環境に適応できます。

非常に簡単な説明でしたが、詳しいことはご自分でお調べになってくださいな。がんばってください!

結構たくさんあるのですが。

まず、転写。原核生物も真核生物もはRNAポリメラーゼがDNAを転写しますが、原核生物はイントロンを含まないmRNAができます。真核生物はエキソン(タンパク質コードする領域)とイントロン(コードしない領域)を含むmRNA前駆体なるものを作ります。この前駆体はスプライシングという操作を受けて、イントロンが切り離されます。さらに、5'末端にキャップ構造を、3'末端にアデニンがたくさん連なったpolyAを付加されます。これで真核生物のmRNAが完成します。

原核生物は核を持た...続きを読む

Q元素と原子の違いを教えてください

元素と原子の違いをわかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

難しい話は、抜きにして説明します。“原子”とは、構造上の説明に使われ、例えば原子番号、性質、原子質量などを説明する際に使われます。それに対して“元素”というのは、説明した“原子”が単純で明確にどう表記出来るのか??とした時に、考えるのです。ですから、“元素”というのは、単に名前と記号なのです。もう一つ+αで説明すると、“分子”とは、“原子”が結合したもので、これには、化学的な性質を伴います。ですから、分子は、何から出来ている??と問うた時に、“原子”から出来ていると説明出来るのです。長くなりましたが、化学的or物理的な性質が絡むものを“原子”、“分子”とし、“元素”とは、単純に記号や名前で表記する際に使われます。

Q標準酸化還元電位について教えてください

先程、酸解離定数について質問した者です。もう一問だけ、よろしくお願いします。

標準酸化還元電位についての定義がわかりません。ネットで探した結果、以下のような文章を見つけたのですが、標準酸化還元電位の説明として適当でしょうか?
また、標準酸化還元電位と酸化還元電位は同じなのでしょうか?
ご回答のほう、よろしくお願いします。


酸化とは物質が電子を失う過程をいい、還元とは物質が電子を得る過程をいうが、この反応は可逆的に発生する。
酸化還元系に溶液に侵されない白金電極と比較電極を入れると、電極の表面と溶液の間に電位が発生する。これを酸化還元電位といい、下記の式で表される。

  Eh=Eo+((2.303RT)/nF)([Ox]/[Red])
     [Ox]:酸化物の活量  [Red]:還元物の活量  R:ガス定数
     F:ファラディー定数   T:絶対温度        Eo:固有定数

Ehは、電気化学での基準となる水素電極を基準とした値だが、水素電極は構成が複雑で実用的でないため、酸化還元電位は比較電極を基準として測定し、水素電極基準に換算してEhを求める。
酸化還元電位は上式から分かるように、酸化物と還元物の比により定まるので、比が一定であれば濃度に関係なく同じEhを示す。また、酸化物の比率が高いとプラス側に、還元物の比率が高いとマイナス側に電位が変動する。

先程、酸解離定数について質問した者です。もう一問だけ、よろしくお願いします。

標準酸化還元電位についての定義がわかりません。ネットで探した結果、以下のような文章を見つけたのですが、標準酸化還元電位の説明として適当でしょうか?
また、標準酸化還元電位と酸化還元電位は同じなのでしょうか?
ご回答のほう、よろしくお願いします。


酸化とは物質が電子を失う過程をいい、還元とは物質が電子を得る過程をいうが、この反応は可逆的に発生する。
酸化還元系に溶液に侵されない白金電極と比較...続きを読む

Aベストアンサー

少々疑問点が分かりづらいですが、とりあえず講義的に説明してみます。なお電極の表面を扱うとなると、本当は説明文よりもはるかに複雑になります。出来れば水溶液中における酸化還元平行が成立する2つの物質を選んだ説明が妥当だと思います。その溶液に自身が反応を起こさない電極を入れた状態を想定します。

酸化体と還元体の間で電気化学的に平行関係が成立する場合、両者を含めた系全体の溶液ポテンシャルEhは両者の活量の比(それぞれの絶対量でなく)によって決定されます。
それが次式(Nernstの式)の式中の(Cox/Cred)で与えられます。

Eh=Eo + (RT/nF) * ln (Cox/Cred)
Rは気体定数,Fはファラデー定数,nは移動する電子の数(1イオンあたり),Cox,Credは酸化体、還元体の濃度
*自然対数を忘れないでください。

またポテンシャルEhは物質(酸化体・還元体対)そのものの種類にも依存します。例えばFe(II)-Fe(III)の酸化還元電位は0.770Vとなっています。溶液中にFe2+とFe3+が等量(正確には等しい活量、というか、濃度で)溶解している場合に、その溶液の電気化学ポテンシャルは0.770Vということです。(なお数字は、水素の酸化還元電位、すなわちH2とH+の平衡電位(両者活量1ですので、1atmの水素ガスとpH0の酸が平衡になっているガス電極)を基準にして比較したときの値です。)
この時のポテンシャルがNo.1さんの言うように、標準酸化還元電位Eoとなります(T=298K,1atm下で)。標準、というのは、例えば電池も使えば酸化体あるいは還元体の量そのものが減り、平衡電位が式中右辺の自然対数内の分変化します。
例えばFe2+が0.1M、Fe3+が0.01M存在する溶液では、ln(0.1/0.01)=10、かつ酸化体と還元体における反応式、

Fe3+ + e- = Fe2+

よりn=1(nはe-の係数)、よって以上をNernst式に代入し、

Eh = 0.770 + (8.31*298/1*96500) * ln 10
= 0.770 + 0.0256 * 2.302 = 0.829

このように平衡電位はアノード、酸化側に+0.059Vだけ変化します。酸化体と還元体の比が100倍、1000倍になるとこの2倍、3倍だけプラスされます。

少々疑問点が分かりづらいですが、とりあえず講義的に説明してみます。なお電極の表面を扱うとなると、本当は説明文よりもはるかに複雑になります。出来れば水溶液中における酸化還元平行が成立する2つの物質を選んだ説明が妥当だと思います。その溶液に自身が反応を起こさない電極を入れた状態を想定します。

酸化体と還元体の間で電気化学的に平行関係が成立する場合、両者を含めた系全体の溶液ポテンシャルEhは両者の活量の比(それぞれの絶対量でなく)によって決定されます。
それが次式(Nernstの式)の式...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。


人気Q&Aランキング