アレルギー対策、自宅でできる効果的な方法とは?

正12面体などの頂点の数や辺の数を求めるとき、1つの頂点に集まる面の数や
1つの辺に集まる面の数が必要なんですけど、これってどうやってわかるんですか?
計算方法とかありますか?

教えて下さい。
よろしくおねがいします。

A 回答 (2件)

正多面体は3次元空間の中では5つしかありません。

これを証明するために、1つの頂点に集まる面の数に注目します。

まず、最も小さい正多角形である正三角形から考えます。立体を形成するためには、最低でも3面必要であることは容易に解ると思います。

そこで、正三角形3枚を組み合わせたキャップを何個か組み立てていくと、4つで正四面体が形成されることが解ります。

同様に4枚の正三角形でピラミッド型のキャップを作り、組み合わせていくと正八面体が形成されます。

正三角形5枚なら正二十面体が形成されます。

正三角形6枚になると正六角形になり、平面化してしまうのでこれ以上の立体は形成できません。

次に正四角形、所謂正方形を考えます。3枚の正方形を組み合わせると正六面体、所謂立方体が形成されます。

正方形4枚になると大きな正方形が形成され、平面化してしまうのでこれでおしまいです。

次は正五角形。3枚でキャップを作ると、正十二面体が形成されます。

正五角形を4枚組み合わせると平面を通り越してエイのような波板になってしまいますのでこれで終わりです。

最後に正六角形。3枚で蜂の巣型の平面になってしまうので、立体は形成できません。よってこれで全ての正多面体が終了したことになります。

オイラーの法則により、

頂点の数-辺の数+面の数=2

となるので、辺の数は簡単に求められます。

1つの辺に集まる面の数? 常に2枚だと思います。

1つの頂点に集まる辺の数は、環状植木算から1つの頂点に集まる面の数と同じです。
    • good
    • 1
この回答へのお礼

初めて見た考え方でした!!

すごいです、、、
本当にありがとうございます!!

お礼日時:2017/05/15 12:13

わざわざ計算するより暗記ですね。


正多面体は数少ないですから全部形を覚えた方が楽だよ。
    • good
    • 0
この回答へのお礼

時間に終われているのでそれも1つの方法ですね。
ありがとうございます!!

お礼日時:2017/05/15 12:12

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q指数法則でこの式(画像)が成り立つ理由を教えてください……

画像の式が成り立つ理由を教えていただけないでしょうか><。
よろしくお願いしますorz

Aベストアンサー

一般的には「テイラー展開」、お示しの式であれば「0 の周りのテイラー展開」つまり「マクローリン展開」というものです。

公式としては下記に載っています。「2. e^x」を見てください。
x = z + w として適用すれば、質問文の式になります。
http://w3e.kanazawa-it.ac.jp/math/category/suuretu/suuretu/henkan-tex.cgi?target=/math/category/suuretu/suuretu/maclaurin.html

証明は「テイラーの定理」の方に書かれていますので、興味があればなぞってみてください。
http://w3e.kanazawa-it.ac.jp/math/category/suuretu/suuretu/henkan-tex.cgi?target=/math/category/suuretu/suuretu/taylor-teiri.html

Q数学の質問です。「素数」とはなんですか?なるべく簡単な説明でお願いします。

数学の質問です。「素数」とはなんですか?なるべく簡単な説明でお願いします。

Aベストアンサー

素朴な数。
1と0は例外で、その他の素朴な数のこと。
約数が2しか無いのよ。

Q弧度法で弧の長さと面積をだす公式が腑に落ちません

弧度法で弧の長さと面積をだす公式が腑に落ちません

弧の長さは、半径 x 中心角(ラジアン)

面積は、半径 x この長さ x 1/2


とのことですが、なぜ上記の公式で、弧の長さと、面積を求めることができるのでしょうか?

Aベストアンサー

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角の割合を掛け合わせたものだとわかります。

よって、このようにすると
「直径 × 円周率」が円の円周の長さ、
「円周率 × 半径 × 半径」が円の面積であることはすでに習っているはずなので
計算式上で理解しやすいはずです。


さて、ではなぜラジアンを使うのでしょうかという問いですが、
実は半径1の円において、円周の長さが2π(ラジアン)であることに関係しています。
半径1の円の弧の長さ
=円周の長さ × 中心角の割合 =2π × 中心角の割合
=中心角(ラジアン)
ここから、弧の長さ=半径×中心角(ラジアン)が導かれるのです。
きちんと理解ができていれば、ラジアンを使ったほうが簡単だったというだけですね。


扇形の面積に関しては、計算式から求めても構わないのですが、
直感的には、No.4のかたの言うように、三角形に細分化したものを考えます。

同じ扇形を二つ用意して、これを小さな扇形にカットしたものを想像してください。
そしてそれを交互に組み合わせていきます。
 ~~~~
/    /
~~~~
カットの仕方が大きいと上の図のようになりますが、
より微細にカットしたものを使うことによって、
| ̄ ̄ ̄|
|   |
  ̄ ̄ ̄
というように、だんだん長方形に近づいていきます。
このとき、底辺が弧の長さ、高さが半径に近づいていきます。
こうすることによって、
扇形の面積(の2個分)は弧の長さ × 半径 と表されるのです。
すなわち、
扇形の面積=弧の長さ × 半径 ÷2
という式が導かれるわけです。

この作業をしているのが積分なのですが、それは割愛します。

π:円周率

中心角(ラジアン) =2π × 中心角(°) /360°
ということを知っていれば、

弧の長さ:半径 × 中心角(ラジアン) =半径 × 2π × 中心角(°) /360°
     =直径 × π × 中心角(°) /360°
この式から、弧の長さは
「直径 × 円周率」に中心角の割合を掛け合わせたものだとわかります。

そして、
扇形の面積:半径 × 弧の長さ × 1/2 =半径 × 半径 × 2π × 中心角(°) /360° × 1/2
      =π × 半径 × 半径 × 中心角(°) /360°
と計算式を変形すれば、ここから
「円周率 × 半径 × 半径」に中心角...続きを読む

Q以前の質問 「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性

以前の質問

「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?
例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?」

に対して、「不明としか言いようがない」との回答をいただきました。

しかし、円周率は定数なので、確定しないとは考えられないと思いました。

現在では証明できないという意味で不明とおっしゃった場合、そうなる確率だけ求めることは可能ですか?

質問は説明不足でしたが、数列のどこかに繰り返しではなく、初めの連続した2ブロック以上が同じ列であるということです
(0.123123...は良いが0.0123123...はなし)

また、円周率が完全にランダムであることはまだ証明されていませんが、ランダムであると仮定して話を進めてください

ループを確かめる手順は
まず円周率の初めは3.1です。
もし次が1で3.11ならば、1桁のループが成立するが、実際には3.14なので次を見る。3.1414だったら2桁のループが成立するが、実際には3.1415だから成り立たない。
1桁目と4桁目が違うので3桁のループはない。次を見て3.14151415の場合、4桁のループだがそれも違う。これをループができるまで無限に見ていく
チャンスを逃す度、次にループができる確率は天文学的に下がっていきますが、それでも決して0にはなりません。ならばいつかループが起こるか、ということです

以前の質問

「円周率は無理数なので無限に循環することはないですが、有限回で終わるループならある可能性はありますか?
例えば
有理数 1/7は0.142857 142857...と無限に循環しますが
無理数がたまたま数回だけループして0.142857 142857 3195634918...などとなる可能性もあります
だから
円周率でも何兆、何京桁と調べていけばこういうループは見つかる可能性がありますか?」

に対して、「不明としか言いようがない」との回答をいただきました。

しかし、円周率は定数なので、確定しないとは考えられないと...続きを読む

Aベストアンサー

>円周率は定数なので、確定しないとは考えられない
おっしゃるとおりです. なので, 確率は0か1のどちらかです. どちらなのかは, 恐らくまだ誰にも証明されていないでしょう.
その上で, 質問者の方が気にしていることは, 恐らく次の問題ではないかと推察します:
「r を 0≦r<1 の範囲の一様乱数とする. r において "ループが見つかる" 可能性はいくらか.」
(注: 小数を十進展開する際, 「0.6768000...=0.6767999...」のように 2 通りに表せるケースがあります. このような場合, 前者の表し方だとループがなく, 後者の表し方だとループがあることになります. しかし, r がこのように 2 通りに表せる確率は 0 なので, このようなケースについて気にする必要はありません.)

この問題について考えてみたのですが, 結論からいうとよくわかりませんでした.

r は一様乱数なので, 任意の正整数 n に対し, 小数第 n 位が 0, 1, ..., 9 である確率は 1/10 です.
【1 桁のループが成立する確率】
小数第 1 位 = 小数第 2 位 となればよいので, 1/10 × 1/10 × 10 = 1/10
【2 桁のループが成立する確率】
小数第 1 位 = 小数第 3 位, 小数第 2 位 = 小数第 4 位 となればよいので, 1/100

と考えていくと, n 桁のループが成立する確率は 1/10^n です.
これを n=1,2,3,..., と単純に無限に足し合わせていくと 1/9 になります. しかし, 例えば「2桁のループと5桁のループが両方成立している」といった可能性もあるので, "ループが見つかる" 確率は 1/9 よりは小さいことになります. が, 厳密な値を求めるのはちょっと面倒そうな気がしました. (勘違いかもしれません.)

>円周率は定数なので、確定しないとは考えられない
おっしゃるとおりです. なので, 確率は0か1のどちらかです. どちらなのかは, 恐らくまだ誰にも証明されていないでしょう.
その上で, 質問者の方が気にしていることは, 恐らく次の問題ではないかと推察します:
「r を 0≦r<1 の範囲の一様乱数とする. r において "ループが見つかる" 可能性はいくらか.」
(注: 小数を十進展開する際, 「0.6768000...=0.6767999...」のように 2 通りに表せるケースがあります. このような場合, 前者の表し方だとループがなく, 後者...続きを読む

Q高校の数学の複素数平面って存在価値あるのですか? 別に習わなくても良くね?

高校の数学の複素数平面って存在価値あるのですか?
別に習わなくても良くね?

Aベストアンサー

複素数平面以外は、存在価値を見て解ているのですか?

三角関数、指数関数、対数なんかも同じでしょ。
ましてや、微分、積分なんて、いつ使う?

何にもしないあなたには、宝の持ちぐされです。

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Q近傍はなんのために考えるのか?

いま、機械科工学部の一年でさっそく解析の授業でつまづいています。

この前の授業で近傍について学んだのですが、これをなんのために考えているのかわかりません。

それとも、意味を考えずにとりあえず受け入れた方がいいのでしょうか?
ご回答よろしくお願いします。

Aベストアンサー

「近傍」ですか・・・(^^;)
正直言って、とりあえず、サラッと流しておく事をお薦めします(^^A)
専攻が機械工学って事ですねので、解析学の単位を取ったら、それ以降「近傍」とお目に掛かる時は無いかも知れません(・・;)
数学では、数学を成り立たせるために大切な概念がたくさんあるのですが、多くの物は・・・後から意味が分かる・・・って事なんですね(^^;)
それを一つ一つ、何のためにこんな事考えるの?ってやっていると、先に進めなくなります(-_-;)
もしかしたら、この後、εーδ論法を勉強するかもしれませんが、そんとき「近傍」を使うかも知れません ヽ( ̄Д ̄*)
この時、「近傍」を使う意味が分かるかも知れませんが、すぐにεーδ論法って何が言いたいの?ってなるでしょうね(^^;;)
数学的概念を理解するためには、数学の思考法の訓練と数学の概念の成り立ちを理解する必要があると思います・・・
・・・ですから、数学を”趣味”にでもしない限り、これらの意味を考え、マスターすることは大変な事で、時には苦痛になるかもです (´ヘ`;)
ですが、数学を”道具”として使う分野では、細かい概念に立ち入らなくても数学が使えるように整備されているんですね(^^)
ですから、数学が専門で無くても、数学を勉強することが出来るんです(^O^)

それから「これをなんのために考えているのか」ですが、ようするに、数学を扱うための”道具”が提供されたって事ですね。
トンカチを知らない人に、トンカチを渡しても意味不明で、その使い方を教えて、初めてトンカチの意味が分かる・・・みたいな話です(^^A)

あんまり参考にならないと思いますが、スミマセン<(_ _)>

「近傍」ですか・・・(^^;)
正直言って、とりあえず、サラッと流しておく事をお薦めします(^^A)
専攻が機械工学って事ですねので、解析学の単位を取ったら、それ以降「近傍」とお目に掛かる時は無いかも知れません(・・;)
数学では、数学を成り立たせるために大切な概念がたくさんあるのですが、多くの物は・・・後から意味が分かる・・・って事なんですね(^^;)
それを一つ一つ、何のためにこんな事考えるの?ってやっていると、先に進めなくなります(-_-;)
もしかしたら、この後、εーδ論法を勉強するかもしれま...続きを読む

Q負の平方根の(社会における)必要性を答えられる方はいますか。中学生に質問されましたが答えられませんで

負の平方根の(社会における)必要性を答えられる方はいますか。中学生に質問されましたが答えられませんでした。

Aベストアンサー

えっとそれは「複素数は実世界でどのように役立つのか?」ということでしょうか?
たぶんそういうご質問ですよね?

量子力学や電磁気学では必須です。これ無しには成り立ちません。
ということはパソコンやスマートフォンをはじめとする半導体を使用した機器が機能しているのは複素数(虚数)を使った自然現象の理解(電子の動きの理解)があってこそのことだと言えます。
波動や振幅を扱う際には必ずオイラーの公式に出会います。
当方はシステム開発の仕事を長くしていましたが、電波関連のシステム開発では虚数単位 i をよく見掛けました。(^^;

なお、以下の本を一読されるとよいかもしれません。
自然界の中で虚数はどのように機能しているかなどが書かれています。

https://www.amazon.co.jp/gp/product/4315520268/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=247&creative=1211&creativeASIN=4315520268&linkCode=as2&tag=atarimae1-22

参考まで。

えっとそれは「複素数は実世界でどのように役立つのか?」ということでしょうか?
たぶんそういうご質問ですよね?

量子力学や電磁気学では必須です。これ無しには成り立ちません。
ということはパソコンやスマートフォンをはじめとする半導体を使用した機器が機能しているのは複素数(虚数)を使った自然現象の理解(電子の動きの理解)があってこそのことだと言えます。
波動や振幅を扱う際には必ずオイラーの公式に出会います。
当方はシステム開発の仕事を長くしていましたが、電波関連のシステム開発では虚...続きを読む

Q電卓で180を1/2にした数字にする

題名の通りです。
電卓で180を1/2にした数字にするにはどうしたらいいのでしょうか?

Aベストアンサー

え?釣り?
180÷2 じゃないの?

Q5段階の真ん中は?

添付画像のようなレビューを見たときに思ったんですが、5段階の真ん中(平均?)って厳密には2.5ですか・・・?
ずっと3だと思っていました。

馬鹿な質問で申し訳ありませんがとても気になったので教えてくださいm(_ _)m

Aベストアンサー

1~5なのか0~5なのかの違いです。
1~5なら3、0~5なら2.5。
普通は「5段階評価」は1~5の5段階なので3ですね。
(0~5だと6段階になってしまう。)


人気Q&Aランキング

おすすめ情報