No.2ベストアンサー
- 回答日時:
sinθ/(1ーcosθ) ー1/tanθ とカッコをっけましょう!
有利化しましょう!また、tanθ=sinθ/cosθより
=sinθ(1+cosθ)/{ (1ーcosθ)・(1+cosθ)}ーcosθ/sinθ
1ーcos^2 θ=sin^2 θより
=sinθ・(1+cosθ)/sin^2 θ ーcosθ/sin
=(1+cosθ)/sinθ ーcosθ/sinθ
=(1+cosθーcosθ)/sinθ
=1/sinθ
No.4
- 回答日時:
オーソドクスに
sinθ/1-cosθ - 1/tanθ
=sinθ(1+cosθ)/(1-cosθ)(1+cosθ) - cosθ/sinθ (⇒左の分母を1-(cosθ)^2にするために分母分子に(1+cosθ)倍
右はtanθ =sinθ /cosθ の逆数)
=sinθ(1+cosθ)/1-(cosθ)^2 - cosθ/sinθ
=sinθ(1+cosθ)/(sinθ)^2- cosθ/sinθ (⇒(sinθ)^2+(cosθ)^2=1)
=(1+cosθ)/(sinθ)- cosθ/sinθ (左側をsinで約分)
=(1+cosθ-cosθ)/sinθ (分母が共通だから分子を1まとめに)
=1/sinθ
このようになります^^¥
No.3
- 回答日時:
いくつか方法がありますが、
1例として
「方針 与えられた等式の両辺をsinθ倍して
(sinθ)^2/(1-cosθ) - (1/tanθ) sinθ=1
{1-(cosθ)^2}/(1-cosθ) -cosθ=1 ・・・・(sin^2+cos^2=1 1/tanθ=cosθ/sinθより)
(1-cosθ)(1+cosθ)/(1-cosθ)-cosθ=1
(1+cosθ)-cosθ=1(ここまでは回答欄には書いてはいけません。)」だから、これを逆順に記述して、
証明)
1-cosθ≠0 tanθ≠0(⇔sinθ≠0)のとき
1=(1+cosθ)-cosθ
=(1-cosθ)(1+cosθ)/(1-cosθ)-cosθ
={1-(cosθ)^2}/(1-cosθ) -cosθ
=(sinθ)^2/(1-cosθ) - (1/tanθ) sinθ
すなわち
1=(sinθ)^2/(1-cosθ) - (1/tanθ) sinθ
この式の両辺を1/sinθ倍すると
sinθ/1-cosθ - 1/tanθ =1/sinθ
よって与えられた等式が成り立つ
という方法もあると思います。^^¥
No.1
- 回答日時:
sinθ/1-cosθ - 1/tanθ =1/sinθ を証明することは、
sinθ・(sinθ/1-cosθ - 1/tanθ) =1を証明することと同じ
与式の左辺=sinθ/1-cosθ - 1/tanθ =sinθ-cosθ-cosθ/sinθ
与式・sinθ=(sinθ)^2-sinθcosθ-cosθ
=(sinθ-1)(sinθ-cosθ)
しかしここで、θ=π/4のとき、sin(π/4)=cos(π/4)だから与式・sinθ=0、つまり、与式=0となる。
よって、等式sinθ/1-cosθ - 1/tanθ =1/sinθは常に成立するわけではない。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角関数教えてください! 3 2022/05/06 19:46
- 数学 過去にしてきた質問に対する解答に関して質問が以下の1〜7に関して解答を頂きたく思います。 時間のある 34 2022/07/09 21:52
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 tan(z)=h(z)/(z-π/2)から h(z)=-(z-π/2)cos(z-π/2)/sin( 2 2022/08/01 23:44
- 数学 「n≦-2の時 z≠π/2の時 g(z)=tan(z)(z-π/2)^(-n-1) z=π/2の時 22 2022/07/04 22:24
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 1. 「f(z)=tan(z) の 0<|z-π/2|<π でのローラン展開は f(z)=tan(z 1 2022/07/20 21:56
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:36
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
最強の防寒、あったか術を教えてください!
とっても寒がりなのですが、冬に皆さんがされている最強の防寒、あったか術が知りたいです!
-
【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
「出身中学と出身高校が混ざったような校舎にいる夢を見る」「まぶたがピクピクしてるので鏡で確認しようとしたらピクピクが止まってしまう」など、 これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
1+cosθをみると何か変形ができると思うのですが、それが何だったのか思い出せません。どなたかこれじ
数学
-
積分で1/x^2 はどうなるのでしょうか?
数学
関連するカテゴリからQ&Aを探す
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
このようなかっこの中にある二...
-
0°≦x≦180°とする。sinθ、cosθ、...
-
θは鋭角とする。sinθ、cosθ、ta...
-
急いでます!!! 2分の3を底を...
-
(1)sinθ=5/13のときcosθ、tanθ...
-
cos2θ+sinθ>1の答えを教えてく...
-
損益算の問題についてです。 あ...
-
順列
-
(√2+√5)二乗の答えって何になり...
-
タテが4cm、ヨコが5cmの長方形...
-
確率
-
1.2.3.4.5.6から異なる3個の数...
-
A B C D E の5人が長いすに座り...
-
「a<0である1次関数y=ax+bで、x...
-
次の式の値を求めよ。 ❝問題❞ (...
-
sin20度=aおく sin70度をaで表...
-
(2)の考え方を教えて下さい!至...
-
-2sinθ+2cosθをrsin(θ+α)に変...
-
中学技術の宿題です。
-
高校入試数学問題
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
このようなかっこの中にある二...
-
A B C D E の5人が長いすに座り...
-
急いでます!!! 2分の3を底を...
-
0°≦x≦180°とする。sinθ、cosθ、...
-
2cos^θ+sinθ+1=0のときのθの解...
-
θは鋭角とする。sinθ、cosθ、ta...
-
順列
-
cos2θ+sinθ>1の答えを教えてく...
-
算数小6 1対3000000の地図上の1...
-
この問題は船の位置を調べる問...
-
1.2.3.4.5.6から異なる3個の数...
-
確率
-
(√2+√5)二乗の答えって何になり...
-
-2sinθ+2cosθをrsin(θ+α)に変...
-
(1)sinθ=5/13のときcosθ、tanθ...
-
0,1,2,3,3,3を並び替えて6桁の...
-
損益算の問題についてです。 あ...
-
「内角の和が900°の多角形は何...
-
数2です。 sin105°-sin15°の解...
-
1から50までの整数をすべてかけ...
おすすめ情報