
No.1ベストアンサー
- 回答日時:
>二項分布において試行回数180は中心極限定理を適用できる大きさである。
この意味が分かりますか? 要するに「正規分布」とみなせるということです。
二項定理の性質から
・期待値:E[X] = 180 * (1/6) = 30
・分散 :V[X] = 180 * (1/6) * (5/6) = 25
なので、「1の目が出る回数の確率分布」は、正規分布 N(30, 5^2) に従うということです。
ここまでのことが分かりますか? 分からなければ「二項分布」を復習してください。
「分散」が「25」ということは、「標準偏差」は「5」になります。
(「分散」は「標準偏差の2乗」ということは分かりますね?)
(1) 標準正規分布表で、信頼係数(平均を中心とした確率)が80%, 90%, 95% になる Z値を求めれば、
・信頼区間80% (平均 ± 40% の範囲内である確率)= 上側確率 10% なので Z≒1.28
・信頼区間90% (平均 ± 45% の範囲内である確率)= 上側確率 5% なので Z≒1.64
・信頼区間95% (平均 ± 47.5% の範囲内である確率)= 上側確率 2.5% なので Z≒1.96
↓ 標準正規分布表
https://staff.aist.go.jp/t.ihara/normsdist.html
Z≒1.28 に対する範囲は「平均:30、標準偏差:5」を使って
30 - 5*1.28 ≦ N ≦ 30 + 5*1.28 → 23.6 ≦ N ≦ 36.4 → 24 ≦ N ≦ 36
Z≒1.64 に対する範囲は
30 - 5*1.64 ≦ N ≦ 30 + 5*1.64 → 21.8 ≦ N ≦ 38.2 → 22 ≦ N ≦ 38
Z≒1.96 に対する範囲は
30 - 5*1.96 ≦ N ≦ 30 + 5*1.96 → 20.2 ≦ N ≦ 39.8 → 21 ≦ N ≦ 39
(2) 「1の目が39回」出るということは
Z = (39 - 30)/5 = 1.8
ですから、上にあげた「標準正規分布表」より「1の目が39回以上出る確率」は
P(Z≧1.8) = 0.03593
つまり「確率分布の中の、上の方の約 3.6%」ということになります。
有意水準20%の場合には「確率分布の中の、下側 10%、上側 10%」の中に入ったら「有意」ということなので、上記の「上側約 3.6%」であれば「有意である」ということになります。
つまり『「1」の目は確率1/6で出てるという仮説』は棄却されることになります。
有意水準10%の場合には「確率分布の中の、下側 5%、上側 5%」の中に入ったら「有意」ということなので、上記の「上側約 3.6%」であれば「有意である」ということになります。
つまり『「1」の目は確率1/6で出てるという仮説』は棄却されることになります。
これに対して、有意水準5%の場合には「確率分布の中の、下側 2.5%、上側 2.5%」の中に入ったら「有意」ということなので、上記の「上側約 3.6%」であれば「有意とはいえない」ということになります。
つまり『「1」の目は確率1/6で出てるという仮説』は棄却できないことになります。
いずれの場合でも「有意である」ということは、つまり「統計的なばらつきでは起こり得ない」ことが起こっているので「統計的なばらつきではない、その値になる何らかの理由・意味がある(=有意である)」、このサイコロの場合には「1/6 の確率で1の目が出る」という仮定以外の何らかの要因がある(イカサマか?)ということです。
「有意とはいえない」ということは、「統計的な変動の範囲内かなあ?」ということで、「イカサマだ!」とは断定できないということです。(しかし、「イカサマではないことが証明された」ということではないので、その点は要注意)
その意味で、有意水準20%、10% の場合には、「このサイコロには何か仕掛けがある。イカサマだ!」と主張することもできますが、各々「20%」「10%」の「間違い確率」(冤罪、名誉棄損)の可能性があるということです。「有意水準」とはそういうことです。
「間違い確率」を5%にまで下げると(つまり、より「より確実性を上げて、慎重に判定」するということ。これが「有意水準5%」)、「イカサマとは言えない」という判定になるわけです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 4 2023/01/19 15:21
- 統計学 統計学の問題です。よろしくお願いします。 あるサイコロを3回投げると,1の目が2回出た。 1の目が出 8 2023/01/19 03:37
- 数学 至急!!大学2年の女子です。この高校レベルの問題が分からないので教えてください!お願いしますm(_ 2 2022/11/11 22:10
- 統計学 統計学の問題です よろしくお願いします 区間推定 母集団は正規分布に従い,母分散は σ2 = 112 1 2023/01/31 18:57
- 統計学 確率統計の問題です。 3 2022/04/07 04:39
- 数学 二項定理と乗法定理の問題について 2 2022/04/25 22:05
- 数学 数学A確率の問題がどうしてもわからないです。 一個のサイコロを投げたとき、3の倍数の目が出る確率は 5 2023/02/23 17:25
- 数学 【 数Ⅰ 仮説検定 】 3 2023/02/27 22:21
- 数学 至急!次の問題を教えてください。 ある市では、消防車の出動要請が平均して1時間当たり1回ある。 多く 2 2022/11/18 20:25
- 数学 【 数Ⅰ 反復試行 】 問題 x軸上を動く点Aがあり、最初は原点にある。硬貨を投げて表が出たら正の方 4 2022/09/29 17:43
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
±4σに入る確率について教えてく...
-
確率が重複する場合の計算方法
-
高校数学の確率の質問です。 私...
-
同じクラスになる確率
-
卵が2個連続双子の確率は?
-
ピリオドグラムって…
-
確率について
-
確率密度関数の縦軸Y
-
数学A 確率問、7人を2つの組A,B...
-
トランプを使った確率の計算方...
-
1から13までの数字が1つずつ書...
-
確率、排反と独立の問題について
-
可能性は「高い」?「大きい」?
-
2山のヒストグラムの間のしきい...
-
複数の項目の確率が100%以上の...
-
Cp値
-
統計確率の質問です。E(x^4)<∞...
-
【数学】 確率で、復元抽出が独...
-
確率をおしえてださい。
-
8頭身あって10人に1人くらいの...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
±4σに入る確率について教えてく...
-
4人がじゃんけんしてあいこにな...
-
8頭身あって10人に1人くらいの...
-
同じクラスになる確率
-
確率が重複する場合の計算方法
-
Cp値
-
[数学] 無限大÷無限大の答えは?
-
1から13までの数字が1つずつ書...
-
可能性は「高い」?「大きい」?
-
確率密度関数の縦軸Y
-
相関係数についてくるP値とは何...
-
丁半バクチの確率
-
発生確率0と見なせるのは?
-
同じ名前、生年月日の人同士が...
-
条件付き確率で、Pa(B)とP(A∩B)...
-
2乗和の平方根の意味は?
-
ピリオドグラムって…
-
スマホゲームをしていて気にな...
-
2人でじゃんけんをして1人の人...
-
卵が2個連続双子の確率は?
おすすめ情報