重要なお知らせ

「教えて! goo」は2025年9月17日(水)をもちまして、サービスを終了いたします。詳細はこちら>

【解消】通知が届かない不具合について

物理の電磁気の問題なのですが、写真の絶縁体シートの問題がわかりません。絶縁体シートがそれぞれ+なのか-なのかわからなくてこまっています。わかる方がいたら解説おねがいします。

「物理の電磁気の問題なのですが、写真の絶縁」の質問画像

質問者からの補足コメント

  • 図24-17aです

    「物理の電磁気の問題なのですが、写真の絶縁」の補足画像1
      補足日時:2020/02/04 10:55

A 回答 (2件)

ああ、先日せっかく答えたのに、既存の著作物を画像で載せているために「ガイドライン違反」ということで削除された質問だ。



「電荷密度が σ、2σ、3σ」ということは、どれかが「+」でどれかが「-」ということはあり得ません。 「σ が +」であれば「2σ、3σ」も「+」だし、「σ が -」であれば「2σ、3σ」も「-」と考えるのがふつうです。つまり「3つとも同電荷」。

「3つとも同電荷」であれば、各々の絶縁シートからは「左右に 1/2 ずつ」の電場ができますから、その「向き」に応じて「加算、減算」でその空間の電場が計算できます。

左から、電荷密度を σ1, σ2, σ3 とすると、
・最も左のシートが作る電場は、向き:シートから「右向き」と「左向き」、大きさ:各々が E1 = (1/2)σ1/ε0
・真ん中のシートが作る電場は、向き:シートから「右向き」と「左向き」、大きさ:各々が E2 = (1/2)σ2/ε0
・最も右のシートが作る電場は、向き:シートから「右向き」と「左向き」、大きさ:各々が E3 = (1/2)σ3/ε0
・かつ、σ1 + σ2 + σ3 = 6σ      ①
ということになり、各々のシートの間の電場は、それらの合成なので、ここでは σ>0 として、右向きを正とすれば(σ<0 ならば左向きを正とすれば同じ)
・左と真ん中のシートの間の電場:
 E12 = E1 - E2 - E3 = (1/2)(σ1 - σ2 - σ3)/ε0     ②
・真ん中と右のシートの間の電場:
 E23 = E1 + E2 - E3 = (1/2)(σ1 + σ2 - σ3)/ε0     ③

②が E=0, ③が E=2σ/ε0 だとすれば
②→(1/2)(σ1 - σ2 - σ3)/ε0 = 0 → σ1 - σ2 - σ3 = 0     ④
③→(1/2)(σ1 + σ2 - σ3)/ε0 = 2σ/ε0 → σ1 + σ2 - σ3 = 4σ    ⑤

①④⑤の連立方程式を解けば
① - ⑤より、σ3 = σ      ⑥
④ + ⑤より、σ1 - σ3 = 2σ
 ⑥より σ1 = 3σ
これらを①に代入して
 σ2 = 2σ

よって、左から
 3σ → 2σ → σ

(注)σ>0 とすれば、E12 よりも E23 の方が大きくなるので E12=0 < E23=2σ/ε0 であり、この「逆」にはなり得ません。
逆に σ<0 とすれば、E12 よりも E23 の方が小さくなるので E12=0 > E23=2σ/ε0 であることに変わりはありません。
    • good
    • 0
この回答へのお礼

質問が消されてしまったのでもう一度質問させていただきました。ありがとうございます!

お礼日時:2020/02/04 15:37

プラスマイナスは題意からは決まらないと思いますよ


電荷密度σの具体的数値がプラスならばシートはプラス電荷をもち、具体的数値がマイナスならシートは負電荷をもつということです。
だから問題は、シートの電荷が正負いずれの場合でも一括してσで扱うということです
ただし、3種のシートの電荷密度は σ、2σ、3σなので、3種類のシートの電荷は同符号ということは言えます。
これを踏まえて、わかりづらい人は、文字σを正扱いして考えるのがやりやすいでしょう。
題意では、ガウスの法則からシートが片方の面に作る電場の強さはE=σ/2εですから、電荷密度の順に各シートの名前を1-2-3と名付ければ
各電界は、シート1が片面に作る電界:σ/2ε
シート2:σ/ε
シート3:3σ/2ε となりますよね
プラスに帯電した3枚のシートを
1-2-3…①
1-3-2…②
2-1-3…③
などと6通りに並べて
左のシートの隙間が電界の和=0
右のシートの隙間が電界の和=2σ/ε 
となるものを見つければよいのです
試しにやってみると
①は左のシートの隙間に作る電荷が
1によるもの=σ/2ε(右向き)
2によるもの=σ/ε (左向き)
3によるもの=3σ/2ε(左向き)
となりシートの隙間の電界は0にならないので不適です
(3まいのシートの電荷が仮にマイナスの場合でも、各電界の向きが変わるだで絶対値は変わらないので、結果は同じとなります)
②もだめ
③もだめ
とやっていくと
3-1-2…5
または
3-2-1・・・⑥
の2ケースは左の隙間の電界=0となることが分かります
(※頭を使えば、3-(1+2)=0だから、3の電界を1+2で打ち消さなければならないので、3が左端に来ることはすぐわかりますが、消去法ならだれでも確実に答えを見つけられるはずです)

次に右側の隙間の電界を調べます
3-1がつくる電界は 2σ/ε
2がこれを打ち消すと 2σ/ε-σ/ε=σ/ε・・・だから⑤はNG
一方3-2が作る電界は 5σ/2ε
1がこれを打ち消すと 5σ/2ε-σ/2ε=2σ/ε・・・⑥はOK
となると思われます
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!