位置情報で子どもの居場所をお知らせ

上極限、下極限について質問です。
【定義】
数列{a_i}i=1,∞に対して新たに、
b_i =sup {a_i}i=1,∞
c_i =inf {a_i}i=1,∞
このような数列を考えます。このとき、数列{b_i}は減少数列、{c_i}は増加数列になっている。
______________________________________________
【例題】
0.9, 0.1, 0.99, 0.01, 0.999, 0.001, ・・・と無限に続く数列{a_i}i=1,∞を考えるときb_1,b_2,b_3,c_1,c_2,c_3を求めてこのことを確認してみよう。

と大学からアップされた資料にありました。

supやinfは数列の全体をみていて、この場合だと、sup{a_i}i=1,∞ = 1
inf {a_i}i=1,∞ =0
となるのはわかるのですが、
このとき、定義通りb_iを求めてみると
b_1=sup{0.9, 0.1, 0.99, 0.01, 0999, 0.001, ・・・}=1
b_2=sup{0.1, 0.99, 0.01, 0.999, 0.001, 0.9999・・・}=1
b_3=sup{0.99, 0.01, 0.999, 0.001, 0.9999, 0.0001,・・・}=1

結果、b_i ={1,1,1, ・・・}となり減少数列になりませんでした。
質問①
これで合っているのでしょうか?広義の単調増加数列ととることはできる気がしますが単調で減少ではないですよね?

質問②
上極限、下極限の定義を簡単に言うと、あるサイトでは第i項までを取り除いた数列の上限、下限の列の極限である。と書いてありました。
上に書いた【定義】と少し違いますがどっちが正しいのでしょうか?上の【定義】では第i項を初項とする無限数列のsup,infをb_i, c_iとしていて少し違うなと思ったのですが、、

色々調べたところ、
質問③
lim b_i (i→∞)が上極限、lim c_i (i→∞)が下極限ということかなあと思っているのですがこれは合ってますか?

ここまで読んでいただきありがとうございました。
質問が多くて大変申し訳ありません。
どなたか教えていただけるとありがたいです。

質問者からの補足コメント

  • コロナで大学が休学となり、アップされた資料を自分で読み課題に取り組むよう言われたのですが、理解力が本当にないので、資料、教科書やサイトを参考にしながら「こうかなあ。違うかな」と1人悩んでいます、、。
    資料が間違っているのかもしれませんが、初めて学習するところで私は資料が正しいのかサイトの方が正しいのか何がなんだかよく分かっていません、、。
    sup,infは既に習っていて、新たにlimsup,liminfというものを今回学びました。
    定義は上記のとおり資料に書いてありました。(打ち間違いはありません)

      補足日時:2020/05/07 19:39

A 回答 (4件)

あなたが例題を解いているやり方では


b_i =もとの数列の第 i-1項までを取り除いた数列の上限ということです。
ということは質問②にあるサイトと同じことをしているわけです。
そのサイトではb_i を第i項までを取り除いた数列の上限としていますが
この2つの定義では数列の番号が1ずつずれるだけで、数列の並びとしては全く同じ
ものです。したがってそれぞれの極限は同じです。
だからlimb_i =1 でこれが上極限ということになります。
つまりあなたのやり方は結果的に正しいのです。
それと増加数列、減少数列はとくに断りがない限り広い意味で使う
ということを覚えておいてください。
まとめると
あなたの例題の解き方はあっている。
ただその解き方と最初の定義が結びつきにくい。
ここは定義を
b_i =sup {a_k}k=i,∞
c_i =inf {a_k}k=i,∞
と変えるべきです。
このへんは大学に一度問い合わしてみてください。
質問①増加減少を広い意味にとる。
質問②数列の並びは同じなので極限に影響しない。
質問③全くその通り。
コロナで大変なようだけどがんばろう(^^)
    • good
    • 0
この回答へのお礼

優しいお言葉、ありがとうございます(;_;)
救われました、、。
とても分かりやすかったです。
本当にありがとうございました!

お礼日時:2020/05/16 17:33

この「定義」を素直に読むと例えば


i = 1, 2, 3, ... に対して b_i = sup {a_i}
になるんだけど, sup をとるはずの数列 {a_i} が 1個の項しか持たないから
b_i = a_i
になっちゃうんだよ. つまり, あなたのいう「定義通り求めてみると」が「定義通り」になってない. とはいえこんなアホな定義に意味はない.

ということで, その資料を書いた人がいろいろと間違っている (and/or 勘違いしている) んじゃないだろうかと思えてならない.
    • good
    • 0

うん、その【定義】にミスプリか写し間違いはないですか?


意味がよくわからないのですが...。
ふつうは質問②のサイトのように定義しますよ。
    • good
    • 0

「定義」に書いてある sup や inf は, 数列 {a_i} のどの範囲を考えているんだろう.

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


人気Q&Aランキング