土地家屋調査士の勉強中です。
3日後試験なので、すぐ教えて欲しいです。
試験は関数電卓使用可能です(プログラムできるのは不可です)

三角形って、三辺がわかれば形は決まるはずですよね。
では、辺がそれぞれa・b・cである三角形の角度はどうやって計算するのでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

余弦定理


 a^2 = b^2 + c^2 -2bc*cosA
より
 cosA = (b^2 + c^2 - a^2)/2bc
となるので、あとは Arccos で出てきます。

ここで、a^2 は a の2乗の意味です。
また、角A は辺 a に向かい合った角としています。
    • good
    • 0
この回答へのお礼

ありがとうございました。
よくわかりました。

お礼日時:2001/08/16 12:59

 SIN、COS、TANを使って角度を算出します。

    • good
    • 0
この回答へのお礼

ありがとうございました。

お礼日時:2001/08/16 12:57

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q三角形の面積

図のような平行四辺形ABCDにおいて三角形EBCの面積が27
三角形CDFの面積が24のとき、AF:FDを求めよという問題がありました。

答えよりも、その途中経過でわからないことがありました。

回答では、三角形ABE=三角形FCE・・・(1)
ということと三角形ABC=三角形BCF・・・(2)
ということ利用して求めてたのですが、
なんで、三角形ABE=三角形FCEなんでしょう???

三角形ABC=三角形BCFなのもなぜかわかりません。
こちらは、面積が等しいことはわかるのですが・・・

初歩的なことでもうしわけないのですが、ご助言のほどお願いいたします。

Aベストアンサー

三角形ABE=三角形FCE も 三角形ABC=三角形BCF も合同ということではなく、面積が等しい(質問者さんの理解で正しい)と思います。

この条件だけで、この問題は解けます。

△EBCの面積は、 平行四辺形の面積の半分 から △ABEの面積を引いたもの。
一方、△CDFの面積は、 並行四辺形の面積の半分 から △ACFの面積を引いたもの。

なので、△ABEの面積と△FCEの面積が同じことから、差の3は、△AEFの面積だということが分かります。

後は、△EBCと△AEFが相似であること(これは質問者さんならきっと簡単に分かりますよね)から、比が求められます。

ご参考に。

Q3辺の比率が3:4:5である直角三角形のそれぞれの角度は?

下辺が4、高さ3、そして対角線が5の比率を持った
直角三角形のそれぞれの角の角度を教えてください。

よろしくお願いします。

Aベストアンサー

下辺の斜辺(対角線ではなく斜辺と呼びます)寄りの角度θは
sinθ=3/5(同時にcosθ=4/5)となる角度ですので、

Excelで
ASIN(0.6) (またはACOS(0.8) )
と打ち込んでください。
※ASINはsinの逆関数(逆算ができる)です。ACOSはcosの逆関数です。

答えは0.6435…となりますよね。
これが弧度法(半径1の円の孤の長さで表す角度の表し方)の角度です。弧度法のπ(≒3.14)は180°と等しいですから、この値に180/πをかけてください。

つまりExcelの式では
ASIN(0.6)*180/PI() (またはACOS(0.8)*180/PI() )
となります。

答えは、およそ36.87°です。

もう一つの角(底辺の対角)は、sinθ=4/5,cosθ3/5となる角度ですから同じように求まります。まあ、そこまでしなくとも、直角三角形ですから、
90°-36.87°=約53.13°
でいいです。

Q中学数学 三角形の面積の求め方と三平方の定理

三平方の定理を使った、三角形の面積の求め方について教えてください。

一辺が6cm、の正三角形の面積を求める場合、
真ん中に垂直に線ABを引いて(直角三角形が2つ)と考え、三平方の定理に当てはめると、
3の2乗+線ABの2乗=6の2乗になり、線AB=3√3になる。
三角形の面積は底辺×高さ÷2なので、6×3√3÷2になり、
面積は9√3cm2になるという問題で疑問があります。

三角形の面積は底辺×高さ÷2なので、単純に6×6÷2=18cm2ではないのですか?
直角三角形も、2等辺三角形も、正三角形も、
どんな三角形でもこのやり方で計算が出来たと思うのですが、
9√3と、18と答えが違うのはどうしてでしょうか。
9√3=√27で、18は=324になるので、9√3=18ではないですよね。

同じやり方で円錐の体積を求める計算があるのですが、同じようになってしまいます。
何か思い違いがあるのだと思いますが、何を思い違いしているのかわかりません。
なぜこうなるのか易しく教えてください。

Aベストアンサー

『三角形の面積は底辺×高さ÷2なので、単純に6×6÷2』
あなたは、正三角形の高さをどうやって求めましたか?
チョット紙に書いてみるだけでも、頂点から垂線を降ろさなければ高さは分からないですよね。
6cmは高さで無くて、一辺の長さですから、あなたはそこを勘違いしています。
直角三角形なら一辺を高さと見なせますが、直角を持たない場合は直角を作り出す作業が必要に成ります。
正しい計算法では、垂線の高さを計算で求めていて、それによって垂線と底辺とで直角を作り、2等分されて出来た二つの三角形の面積を三平方の原理から算出しています。
三角形の高さと一辺の長さは同じで無いことは簡単に分かりますね。
円錐の場合も、高さは上と同様に垂線の高さを求めなければ、計算出来ません。

Q任意の三角形からその三角形と面積の等しい正三角形をその三角形を使って作図するには??

等積変形の問題なのですがかなり考えたのですがわかりません。どなたかわかれば教えてください。

Aベストアンサー

方べきの定理を使用します。
任意の三角形の1辺をaとし、此に頂点から垂線を下ろします。
垂線の長さをbとする。
面積は、ab/2
正三角形の1辺をcとすると、面積は((√3)c^2/4)
c^2=(2√3)ab/3)
ですので、2a/3の線分を作るには、平行線を利用することにより作図できます。
次に、(√3)bを作図しますが、此は1辺がbの正方形を作図して、対角線をとりますと、(√2)bが出来ます、
此を1辺とし、もう1辺をbとする長方形を作り、この対角線は(√3)bとなります。
これで、(2a/3)と(√3)bの辺の長さが決まりましたので、ここで方べきの定理を使用します。
1点より、同じ方向へ、(2a/3)と(√3)bを直線上にとり、この差の半分の長さで円を描きます(この直線上に円の中心がある)。全ての点は同一直線上にある。
つぎに、最初の1点と円の中心点とを直径とする円を描き、交点と最初の1点を結ぶと、接線となり、此がcとなります。
此を1辺とする正三角形を書けば出来上がりです。
作図をするときにa,bを入れ替えてしても同じ結果になります。

方べきの定理を使用します。
任意の三角形の1辺をaとし、此に頂点から垂線を下ろします。
垂線の長さをbとする。
面積は、ab/2
正三角形の1辺をcとすると、面積は((√3)c^2/4)
c^2=(2√3)ab/3)
ですので、2a/3の線分を作るには、平行線を利用することにより作図できます。
次に、(√3)bを作図しますが、此は1辺がbの正方形を作図して、対角線をとりますと、(√2)bが出来ます、
此を1辺とし、もう1辺をbとする長方形を作り、この対角線は(√3)bとなります。
これで、(2a/3)と(√3)bの辺の長さが決まりまし...続きを読む

Q三角形ABFと三角形DEFの面積は等しいのですが、なぜですか?

三角形ABFと三角形DEFの面積は等しいのですが、なぜですか?

Aベストアンサー

辺ADと辺BEが平行なら、△ABEと△DBEの面積は等しい。
△ABF=△ABE-△FBE
△DEF=△DBE-△FBE

よって
△ABF=△DEF

Q直角三角形以外の三角形の辺の長さ

現在中学生ですが、三平方の定理を学校で習いました。直角三角形以外での求め方はないのだろうかと、いろいろ考えてみましたが、ぜんぜん分かりません。高校で習うのかもしれませんが・・・・。二等辺三角形の場合だけとか、そういった限られた場合でもいいので、そういう辺の長さを求める定理があるならば教えてください。
ついでに・・。今いろいろやって、二等辺三角形の辺の長さを求めるのをやってたら、
底辺以外の辺の長さをxとした場合、それぞれ頂角が30°,120°なら、底辺の長さが x(√2+√6)/2, x√3になったんですけどあってますか?

Aベストアンサー

三角形の辺や角度を求めるものに、
正弦定理と余弦定理というものがあります。(URL参照)
高校生になったら普通に習うと思います。

正弦定理:http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/seigen/seigen.htm
余弦定理:http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/yogen/yogen.htm

Q三角形の面積の求めかた

友人に頼まれ、問題を解いたのですが答えがあっているのかいまいち自信が持てません。
間違った答えを教えるのも心苦しいので、こちらで数学の得意な方に答えあわせをしていただければと思い質問を立てました。

図が表示できないので少し面倒かもしれませんが、助けてくださると嬉しいですm(_ _)m
よろしくお願いいたします


三角形ABCにおいて、AB=2√3、∠A=75°、∠B=45°である。
また、頂点Aから辺BCに引いた垂線がBCと交わる点をHとする。
この時三角形ABCの面積を求めなさい。


私は三角形ABHと三角形AHCの面積をそれぞれ求め、
三角形ABCの面積は 3+√3 になりました。

Aベストアンサー

三角形ABHの面積は
(1/2) × AH × BH
=(1/2) × √6 × √6
=3

三角形ABCの面積は
(1/2) × CH × AH
=(1/2) × √2 × √6
=√3

三角形ABCの面積は3 + √3であっています。

Q三角形の辺の比と、角度の比の法則

三角形の辺の比と、角度の比の法則があれば教えてください。
3つの辺の比が分かるか、3つの角の比が分かれば、三角形の形が決まるから
辺の比と角の比は相互に求めるための式があるんだとおもいます。

Aベストアンサー

済みません。

>sinA =5t, sinB = 6t, sinc = 7t とおけて
>A=Arcsin(5t),B=Arcsin(6t),C=Arcsin(7t)
>ですので角度の比は
>Arcsin(5t) : Arcsin(6t) : Arcsin(7t)
>となります。

ここでtを出さないといけないことを忘れてました。
このまま計算すると、大変ややこしくなるので、私の#4の回答は無視してください。
#3さんのように、余弦定理を使う方が計算がすっきりします。

a=5k,b=6k,c=7k とすると
cosA=(b^2+c^2-a^2)/2bc = 60k^2/84k^2 = 5/7
cosB=(c^2+a^2-b^2)/2ca = 38k^2/70k^2 = 19/35
cosC=(a^2+b^2-c^2)/2ab = 12k^2/60k^2 = 1/5
となるので、
A:B:C = Arccos(5/7):Arccos(19/35):Arccos(1/5)
です。
Arccos は cosの逆関数です。

済みません。

>sinA =5t, sinB = 6t, sinc = 7t とおけて
>A=Arcsin(5t),B=Arcsin(6t),C=Arcsin(7t)
>ですので角度の比は
>Arcsin(5t) : Arcsin(6t) : Arcsin(7t)
>となります。

ここでtを出さないといけないことを忘れてました。
このまま計算すると、大変ややこしくなるので、私の#4の回答は無視してください。
#3さんのように、余弦定理を使う方が計算がすっきりします。

a=5k,b=6k,c=7k とすると
cosA=(b^2+c^2-a^2)/2bc = 60k^2/84k^2 = 5/7
cosB=(c^2+a^2-b^2)/2ca = 38k^2/70k^2 =...続きを読む

Q空間における三角形の面積は外積で求められない?

平面における三角形の面積は、外積(平行四辺形の面積)を
2で割って求められました。
空間における三角形の面積を求めようと、外積を求め2で割っても
三角形の面積になりませんでした。
なぜなのでしょうか?

Aベストアンサー

>外積=ベクトルなんでしょうか?
そうです!! ここが、質問者さんが勘違いされていたところですね。
外積と呼ばずに「ベクトル積」と呼べ(覚えれ)ば、誤解しなかったですね。
これに対し、内積はスカラー積とも呼ばれています。

参考URL:http://www12.plala.or.jp/ksp/formula/mathFormula/html/node63.html

Q直角三角形の角度と辺の長さの求め方を教えて下さい

添付の直角三角形の角度(AとB)と辺の長さ(a)の求め方を教えていただきたいです。

三平方の定理やsin、cos、tan等を用いて解くのだと思うのですが
根本的にこれらが理解できていないため、どう解いていけばよいかのかがまったくわからず困っています。

どなたか、こんなど素人でもわかるよう一つ一つ初歩的なところから丁寧にご指導&ご説明いただければ、とても助かります。

どうか、よろしくお願いします。

Aベストアンサー

#2です。

A=45°なら
B=90°-A=45°
なのでsinA=sinB=cosA=cosB=1/√2≒0.7071
a=8.5sinB=8.5*(1/√2)≒8.5/1.4142≒6.01
となります。


人気Q&Aランキング

おすすめ情報