∫xe^(-ax)dx
 a:定数
の解き方を教えてください。

このQ&Aに関連する最新のQ&A

eの積分」に関するQ&A: eの積分

A 回答 (3件)

たぶん、これを見る頃にはできてるでしょう。


だから解答しちゃいます。

(xe^(-ax))’=e^(-ax)+(x){e^(-ax)}*(-a)…(1)
{e^(-ax)}’=e^(-ax)*(-a)…(2)

(1)*a+(2)より、
{(ax+1)e^(-ax)}’=(-a^2)x{e^(-ax)}

∴ xe^(-ax)= {(ax+1)e^(-ax)/(-a^2)}’


あとは∫dxをつけて終わり
    • good
    • 0

∫xe^(-ax)dx = -(1/a)xe^(-ax) + (1/a)∫e^(-ax)dx


= -(1/a)xe^(-ax) + (1/a){-(1/a)e^(-ax)}
= -(1/a)xe^(-ax) -{(1/a)^2}e^(-ax)
= -(1/a){x + (1/a)}e^(-ax)

部分積分を使って解くと↑のようになると思います。
    • good
    • 0

e^(-ax) の不定積分はわかりますよね.


それなら,部分積分を使ってみましょう.
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q∫xe^xsin(x)dx=x(∫xe^xsin(x)dx)-∫1(∫

∫xe^xsin(x)dx=x(∫xe^xsin(x)dx)-∫1(∫xe^xsin(x)dx)dx

この式変形がわからないのですが。ご教授ください。

Aベストアンサー

>もともとは「∫xe^xsin(x)dxの不定積分を求めよ」という問題で

部分積分法の応用です。

(xe^xsin(x))’=e^xsin(x)+xe^xsin(x)+xe^xcos(x)
より、
xe^xsin(x)=∫e^xsin(x)dx+∫xe^xsin(x)dx+∫xe^xcos(x)dx
同様に、
xe^xcos(x)=∫e^xcos(x)dx+∫xe^xcos(x)dx-∫xe^xsin(x)dx

2式の差をとると、
xe^xsin(x)-xe^xcos(x)=∫e^xsin(x)dx-∫e^xcos(x)dx+2∫xe^xsin(x)dx
より、
∫xe^xsin(x)dx=(xe^xsin(x)-xe^xcos(x)+∫e^xcos(x)dx-∫e^xsin(x)dx)/2

あとは、∫e^xcos(x)dx-∫e^xsin(x)dxが分かればいいですね。

上記と同じ方法で、
(e^xcos(x))’=e^xcos(x)-e^xsin(x)
より、
e^xcos(x)=∫e^xcos(x)dx-∫e^xsin(x)dx
なので、
∫xe^xsin(x)dx=(xe^xsin(x)-xe^xcos(x)+e^xcos(x))/2

(積分定数は省略しています)

>もともとは「∫xe^xsin(x)dxの不定積分を求めよ」という問題で

部分積分法の応用です。

(xe^xsin(x))’=e^xsin(x)+xe^xsin(x)+xe^xcos(x)
より、
xe^xsin(x)=∫e^xsin(x)dx+∫xe^xsin(x)dx+∫xe^xcos(x)dx
同様に、
xe^xcos(x)=∫e^xcos(x)dx+∫xe^xcos(x)dx-∫xe^xsin(x)dx

2式の差をとると、
xe^xsin(x)-xe^xcos(x)=∫e^xsin(x)dx-∫e^xcos(x)dx+2∫xe^xsin(x)dx
より、
∫xe^xsin(x)dx=(xe^xsin(x)-xe^xcos(x)+∫e^xcos(x)dx-∫e^xsin(x)dx)/2

あとは、∫e^xcos(x)dx-∫e^xsin(x)dxが分かればいいですね。

上記と同じ方...続きを読む

Q三角関数を使わずに∫[-1,1]1/√(1-x^2) dx=2∫[-1,1]√(1-x^2) dx

http://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8%E7%8E%87
によると、
π:=∫[-1,1]1/√(1-x^2) dx

π:=2∫[-1,1]√(1-x^2) dx

π:=∫[-∞,∞]1/(1+x^2) dx

ということですが、

∫[-1,1]1/√(1-x^2) dx
=2∫[-1,1]√(1-x^2) dx
=∫[-∞,∞]1/(1+x^2) dx

ということを三角関数を使わずに示すにはどうしたらよいのでしょうか?
三角関数を使わずに、という理由は、
arcsin(x)=∫[0,x]1/√(1-x^2) dx
というのが三角関数の定義として考えたいからです。

Aベストアンサー

∫[-1,1]√(1-x^2) dx
=[x√(1-x^2)][-1,1]+∫[-1,1]x^2/√(1-x^2) dx
=-∫[-1,1]√(1-x^2) dx+∫[-1,1]1/√(1-x^2) dx

2∫[-1,1]√(1-x^2) dx
=∫[-1,1]1/√(1-x^2) dx

Q∫ax^2*exp(-(a/b)*x^2)dx

-∞から∞まで
計算過程がまったくわかりません。
よろしくお願いします。

Aベストアンサー

∫(-∞→∞){ax^2・exp(-(a/b)・x^2)}dx  (・は掛け算の意)

a,bの前提が何も書かれていないので、a,b∊R(Rは実数の集合)でa/b≧0としておく.

f'(x) = ax・exp(-(a/b)・x^2)
g(x) = x
・・・と見て部分積分の手続きに従う・・!

そうすると正規分布でおなじみのガウスの誤差積分が出てくる・・!
(上記積分形は度々質問の俎上に挙げられるようである・・!?)

Q∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

ヒント
fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。

同書の略解
分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ))

となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。

s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)

からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。

よろしくお願いいたします。

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

...続きを読む

Aベストアンサー

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i-1))+inf(f)(xi-yj)の方が大きくなる。
sup(f)では逆に小さくなる。
(グラフを描いてみればわかると思います)

すなわち、分割を細かくすると、不足和は大きく、過剰和は小さくな
る。

なので、s(f,Δ1)≦s(f,Δ3)、s(g,Δ2)≦s(g,Δ3)
辺々足して、
s(f,Δ1)+s(g,Δ2)≦s(f,Δ3)+s(g,Δ3)
≦s(f+g,Δ3)≦sup(s(f+g,Δ))←これは、あらゆる分割Δに対するsup
という意味で使っているので、Δは分割の変数のような記号と思って
ください。

このように、別個の分割に対する不等式が示せたので、
s(f,Δ1)、s(g,Δ2)それぞれであらゆる分割を考えて、
sup(s(f,Δ))+sup(s(g,Δ))≦sup(s(f+g,Δ))

infのほうも同様です。

本の記述はわかりませんが、同じ分割に対してのみsup,infを考えてい
たのでは、やや曖昧な気がします。

しかし、私の大学時代の関数論が専門の教授は、一松信先生は大先生
だと絶賛していましたが・・・
おそらく、本の中で論理は通っているものと思われますが・・・

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i...続きを読む

Q∫xe^-x^2dx

∫xe^-x^2dx

が0から1の時
答えが1/2(1-1/e)になるのですが
それまでの計算がわかりません
教えてください

Aベストアンサー

∫[0,1}xe^(-x^2)dx=∫[0,1}(-1/2)(-x^2)'*e^(-x^2)dx
=-(1/2)∫[0,1]{e^(-x^2)}'dx
=-(1/2)[e^(-x^2)] [0,1]
=-(1/2){e^(-1)-e^0}=(1/2){1-(1/e)}


人気Q&Aランキング

おすすめ情報