【お知らせ】カテゴリの見直しについて

ある演習問題で
∫1/√(x^2+A)
という形が出てきて、それが解けずに解答を見たら、
∫1/√(x^2+A) = log|x+√(x^2+A)|
という記述で、この積分の問題は済まされていました。逆算すると、確かにそうなるのですが、なかなかこの形を直接考え出すのは、難しい気がします。…ので、単純な暗記になると思うのですが、覚えにくい形ですよね…。
何か右辺を導き出すような考えの手順のようなものはあるでしょうか?

よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

高校範囲だと、#1の方のように、


t = x+√(x^2+A)
という置換を覚えるものです。

∫1/(1+x^2)dx という形をみたら、x=tan(t) と置く、ていうのと同じ感じで、
∫1/√(1+x^2)dx という形をみたら、t=x+√(1+x^2) と置くものなんです。
この積分は、けっこうよく出てくるので、覚えておいて損はないです。

大学生であれば、#2の方のように、x=sinh(t) と置換するってのが常道でしょうけど。
    • good
    • 4

x = (√A)sinh t として置換積分.

    • good
    • 6

√(x^2+A)=t-xとおけば


A=t^2-2tx
x=(t^2-A)/2t
dx={(t^2+A)/2t^2}dt
よって、
∫dx/√(x^2+A)
=∫dx/(t-x)
=∫{(t^2+A)/2t^2}dt/{t-(t^2-A)/2t}
=∫{(t^2+A)/2t^2}dt/{(t^2+A)/2t}
=∫dt/t
から、log|x+√(x^2+A)|です。
    • good
    • 6

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q∫1/x√(x^2+1) の積分について。

∫1/x√x^2+1を積分しろ
という問題があるのですが、解答をみると
√(x^2+1)=t-x
と、置き換えて積分していくのですが、僕は
√(x^2+1)=t
とおいて積分したのですが、これでは出来ないのでしょうか?
一応これでも計算はできた(つもり?)のですが、解答と答えが違っていたのでどこかで、ミス(思い違い?してはいけないことをした?)があったのかと思うのですが…。

答えは
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|
です。
僕の置換の方法でやると、
1/2log|√(x^2+1)-1/√(x^2+1)+1|
です。

Aベストアンサー

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^2+1))]|
=Log―――――――――――――――――――――――――
              |(x+1)^2-(x^2+1)|


     |x^2-(1-√(x^2+1))^2|
=Log―――――――――――――――
              |2x|


     |x^2-1+2√(x^2+1)-x^2-1|
=Log――――――――――――――――――
              |2x|


     -1+2√(x^2+1)-1
=Log――――――――――――
              |2x|


     √(x^2+1)-1
=Log―――――――――
        |x|


     [√(x^2+1)-1][√(x^2+1)+1]
=Log―――――――――――――――――
        |x[√(x^2+1)+1]|


         |x^2|
=Log――――――――――――
     |x[√(x^2+1)+1]|


           |x|
=Log――――――――――――
      √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
------------------------------------------------------------

1/2log|√(x^2+1)-1/√(x^2+1)+1|

   1        √(x^2+1)-1
 ――― ・ Log――――――――――――
   2        √(x^2+1)+1


   1        [√(x^2+1)-1][√(x^2+1)+1]
=――― ・ Log―――――――――――――――――
   2        [√(x^2+1)+1][√(x^2+1)+1]


   1            |x^2|
=――― ・ Log――――――――――――
   2        [√(x^2+1)+1]^2


            |x|
= Log――――――――――――
       √(x^2+1)+1


=Log|x|-Log[1+√(x^2+1)]
-----------------------------------------------------------

ふつうに書き始めましたが、多重括弧で目が回り、全角になってしまいました。御検証ください。
log|{x-1+√(x^2+1)}/{x+1+√(x^2+1)}|

     |x-1+√(x^2+1)|
 Log ――――――――――――
     |x+1+√(x^2+1)|


     |[x-1+√(x^2+1)][x+1ー√(x^2+1)]|
=Log―――――――――――――――――――――――――
      |[x+1+√(x^2+1)][x+1ー√(x^2+1)]|


     |[x-(1-√(x^2+1))][x+(1ー√(x^...続きを読む

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q∫√(x^2 +1)dxの計算

∫√(x^2 +1)dxは、t=x+√(x^2 +1)と置いて計算すると参考書に書いてありましたが、模範解答の最後の2行は

=(1/2)(1/2)(t+ 1/t)(1/2)(t -1/t)+(1/2)log|t|+C
=(1/2){x√(x^2 +1) +log(x+√(x^2 +1))+C ・・・(答)

となっていました。
実際にtをx+√(x^2 +1)に戻して計算してみましたが、とても煩雑な式になってしまい、うまく答えにたどり着けません。
特に上の模範解答の2行の前半部分について、(1/2)(1/2)(t+ 1/t)(1/2)(t -1/t)=(1/2)x√(x^2 +1)と変形できません。
通分しても分母・分子ともにごちゃごちゃした式になっていて手が止まってしまいました。
それでも分母の有理化なり分子の因数分解なりを力技でしないと解答にたどり付けないのでしょうか。
すっきり変形できる方法があればよろしくお願いします。

Aベストアンサー

次のように変形されてはどうですか。

t = x+√(x^2 +1)より
t - x =√(x^2 +1)
すなわち (t - x)^2=x^2+1
よって (左辺)-(右辺) = t^2 -2tx -1=0

両辺をtで割って t -2x -1/t =0
すなわち
t -1/t = 2x
両辺を2で割って
(1/2)(t -1/t) = x 式(1)

また、
(1/2)(t+ 1/t)
= t - (1/2)(t -1/t)
= (x+√(x^2 +1)) -x
= √(x^2 +1) 式(2)

式(1),(2)より
(1/2)(1/2)(t+ 1/t)(1/2)(t -1/t)
= 1/2 × √(x^2 +1) × x
= (1/2)x√(x^2 +1)

Qx/(a^2+x^2)の積分について

x/(a^2+x^2)の積分について

t=a^2+x^2とおいて
dt=2xdx
よって
∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C
と置換積分により積分することが出来ますが、
部分積分では計算できないのでしょうか?

(a^2+x^2)'=2x
∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx
として計算できると思ったのですが、うまく行きません。
どなたかアドバイス頂けたら幸いです。

Aベストアンサー

#2です.

部分積分 ∫f(x)g'(x)dx=f(x)g(x)-∫f'(x)g(x)dx が,実は,
積の微分 (f(x)g(x))'=f'(x)g(x)+f(x)g'(x) を積分して
構成した式である.と言うことは,ご存じでしょう.

また,部分積分の式は,

∫f(x)g(x)dx=f(x)∫g(x)dx-∫(f'(x)∫g(x)dx)dx

と書くこともあります.ですから,私は,∫f(x)g(x)dx を得たい時,
まず,∫(f'(x)∫g(x)dx)dx が積分できるかどうかを調べます.

一般に,積分や微分方程式を解く場合に,ある決まった統一的な,
方法というものがありません.個々の場合について,想像力や創造力を
働かして,個別に,新しく考えねばなりません.そこが,また,魅力とも言えるでしょう.

高校,大学の演習問題ならば,過去に考えられている方法のいずれかが応用できます.
しかし,大学院や社会へ出るなどして直面する問題には,新しい方法を必要とする場合が多いです.
その時は,過去の応用問題は役に立たず,やはり想像力や創造力を発揮しなければ解決しない事が多いでしょう.

そこで,あなたが,

>>「部分積分の形にすることができれば必ず求めたい積分が得られる!」

のではないか,と思い込んだ,その着想が大事なのです.
そういう着想・アイデア・手がかりの思いつき,などがなければ,物事の進歩・発展はないのです.

そう言う,あなたの意識が「お礼」に書かれていましたので,
また,この様な,つたない回答(投稿)となりました.

●(注)些細な事かも知れませんが,f(x)の微分は,
  f(x)' ではなく f'(x) と書くのが正しいと思います.
  手書きで書く時も,カッコの後にプライム(ダッシュ)をつける
   f(x)' ではなく,f にプライムを付けて,f'(x) と書いています.
  私は,学生時代から今に至るまで,永年その様に書いていますが,
  最近の記号法は変わりましたか?

とめどもない書き込みで,お時間を取らせまして,大変失礼いたしました.

#2です.

部分積分 ∫f(x)g'(x)dx=f(x)g(x)-∫f'(x)g(x)dx が,実は,
積の微分 (f(x)g(x))'=f'(x)g(x)+f(x)g'(x) を積分して
構成した式である.と言うことは,ご存じでしょう.

また,部分積分の式は,

∫f(x)g(x)dx=f(x)∫g(x)dx-∫(f'(x)∫g(x)dx)dx

と書くこともあります.ですから,私は,∫f(x)g(x)dx を得たい時,
まず,∫(f'(x)∫g(x)dx)dx が積分できるかどうかを調べます.

一般に,積分や微分方程式を解く場合に,ある決まった統一的な,
方法というものがありません.個々の場合について,想...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q1 / (x^2+1)^(3/2)の積分について

1 / (x^2+1)^(3/2) の積分なのですが、これはどのように解いたら良いのでしょうか?
置換積分法で解こうとしても解けませんでしたし、部分積分法でもいまいち分かりませんでした。
ちなみに答えは x / (1 + x^2)^(1/2) + C となっていました。

どなたか解説よろしくお願いします。

Aベストアンサー

正攻法で、
x=tanTとおくと、
dx=[1+(tanT)^2]dT
dx=[1+x^2]dT

∫dT/√(1+tanT^2)・・・(-π/2<T<π/2)
=∫dTcosT
=sinT・・・(sinTとtanTの符号が一致しているのを確認して、)
=x/√(x^2+1)
こんな感じでしょうか。

Q積分∫[0→1]√(1-x^2)dx=π/4

定積分∫[0→1]√(1-x^2)dx=π/4
この計算の仕方が分かりません。
x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。
∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?
次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり
=π/4となる様です。計算の説明を分かりやすくお願い致します。
また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう?

Aベストアンサー

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形になります

(1/2)∫[0→π/2](1+cos2θ)dθ

=(1/2) [ θ + (1/2) sin 2θ] (0→π/2)

= (1/2){(π/2 + sin π)ー(0 + sin 0)}
= (1/2)(π/2 )
=π/4

> また、π/4 は 45°で、
> cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、
> それとの関係はどうなるのでしょう?

上記の積分の π/4  は面積
π/4 は 45°という時の π/4  は角度
ですので、関係は深く考えても仕方ありません

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形に...続きを読む


このQ&Aを見た人がよく見るQ&A