No.6ベストアンサー
- 回答日時:
多項式では書けない。
指数関数のような初等関数もイヤだということなら…「lim_{x->+-∞}f(x)=0で、ピークを一つだけ持つ」「非負関数」「連続関数」「至る所微分可能」。例えば f(x) = 1/(x² + 1) とか。
「f(0)=0かつlim_{x->∞}f(x)=0 」「ピークを一つだけ持つ」「非負関数」「連続関数」「至る所微分可能」。ということは、(x<0 ならばf(x) = 0) あるいは(x>0 ならばf(x) = 0)を満たす。例えば f(x) = (x<0 のとき0, x≧0のとき x²/(x³ + 1) ) とか。
ところで、「ピークを一つだけ持つ」話だというのに
> ピークは上だけでも上下両方合わせてでもどちらでもよい
とは一体どういうことなんだか、さっぱりわからない。
No.5
- 回答日時:
> 微分可能な関数で
割と簡潔な式で っていうと、例えば
x < 0 のとき f(x) = 0,
x ≧ 0 のとき f(x) = x^2 e^-x.
なんてどう?
No.2
- 回答日時:
x < 0 で f(x) = 0,
0 ≦ x < 1 で f(x) = x,
1 ≦ x で f(x) = 1/x^2.
とかどう?
f(0) = 0 かつ lim[x→±∞] f(x) = 0 かつ 極大値は f(1) ひとつだけ。
式も割と簡単な代数式だけ使っている。
∫[-∞,+∞] f(x) dx が有界だから、
定数倍して確率密度関数にすることもできるよ。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 関数列の収束について 次の問題を教えて欲しいです。 区間[0,1) の関数列fnと関数f(x)につい 1 2022/06/01 08:33
- 数学 確率について ①Xが実数値をとる確率変数で、f(x)=0(x<=-1),1/4x+1/4 (-1<= 2 2022/06/20 18:44
- 数学 数学Ⅲの関数の極限、関数の連続・不連続に関しての質問でございます。 問題集には、次の関数の〔 〕内の 5 2022/05/19 10:43
- 数学 ①lim x→∞で1/xだった場合は発散しないため限りなく0に近い解が求められるのでしょうか? 例え 7 2022/05/16 19:27
- 統計学 統計学の確率密度関数についてです。 記号の表記方法が分からないので画像も添付します。 よろしくお願い 5 2023/11/13 06:06
- 数学 原始関数の存在性の証明について 数学科の3回生です。院試の勉強でつまづいたので助けてほしいです。 R 6 2022/11/13 19:19
- 大学・短大 累積分布関数F(x)の計算の仕方を教えてください。 3 2022/06/12 07:39
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
- 統計学 確率変数XとYは独立で一様分布U(0,1)に従うとき、(1)E(X+1)、(2)E((X+Y)^2) 2 2022/07/30 09:39
- 数学 1変数関数に陰関数ってあるんですか? 1変数関数は f(x)=xの式 f(x)はxの値で決まるもの( 4 2023/05/08 18:47
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
"交わる"と"接する"の定義
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
数学の f(f(x))とはどういう意...
-
次の関数の増減を調べよ。 f(x)...
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
どんな式でも偶関数か奇関数の...
-
左上図、左下図、右上図、右下...
-
フーリエ級数について
-
数学の記法について。 Wikipedi...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微分について
-
大学の問題です。
-
大学数学 解析学 区間[a,b]で...
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
yとf(x)の違いについて
-
数I 2次不等式x²+2x+m(m-4)≧0が...
-
差分表現とは何でしょうか? 問...
おすすめ情報
ご回答ありがとうございます。lim_{x->+-∞}f(x)=0でも良いのでその意味で正規分布の確率密度関数を例に入れました。
ピークは上だけでも上下両方合わせてでもどちらでもよいです!よろしくお願いいたします。
ご回答ありがとうございます!できれば連続関数でお願いしたいです。。。
ご回答ありがとうございます。非負関数になります。補足ありがとうございます。やっぱり指数関数とか対数をつかった複雑な式しか無理ですかね。
ご指摘ありがとうございます。おっしゃる通りです。微分可能な関数でお願いしたいです。